Properties

Label 260.2.o.a.27.10
Level $260$
Weight $2$
Character 260.27
Analytic conductor $2.076$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,2,Mod(27,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.10
Character \(\chi\) \(=\) 260.27
Dual form 260.2.o.a.183.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.942648 + 1.05424i) q^{2} +(0.158208 + 0.158208i) q^{3} +(-0.222831 - 1.98755i) q^{4} +(-2.23604 + 0.0111104i) q^{5} +(-0.315922 + 0.0176543i) q^{6} +(-2.20671 + 2.20671i) q^{7} +(2.30540 + 1.63864i) q^{8} -2.94994i q^{9} +O(q^{10})\) \(q+(-0.942648 + 1.05424i) q^{2} +(0.158208 + 0.158208i) q^{3} +(-0.222831 - 1.98755i) q^{4} +(-2.23604 + 0.0111104i) q^{5} +(-0.315922 + 0.0176543i) q^{6} +(-2.20671 + 2.20671i) q^{7} +(2.30540 + 1.63864i) q^{8} -2.94994i q^{9} +(2.09608 - 2.36779i) q^{10} -3.71929i q^{11} +(0.279192 - 0.349699i) q^{12} +(0.707107 - 0.707107i) q^{13} +(-0.246246 - 4.40655i) q^{14} +(-0.355516 - 0.352001i) q^{15} +(-3.90069 + 0.885776i) q^{16} +(-3.39861 - 3.39861i) q^{17} +(3.10994 + 2.78075i) q^{18} -3.95131 q^{19} +(0.520342 + 4.44176i) q^{20} -0.698237 q^{21} +(3.92101 + 3.50597i) q^{22} +(-5.15484 - 5.15484i) q^{23} +(0.105486 + 0.623977i) q^{24} +(4.99975 - 0.0496864i) q^{25} +(0.0789057 + 1.41201i) q^{26} +(0.941326 - 0.941326i) q^{27} +(4.87767 + 3.89422i) q^{28} +2.61015i q^{29} +(0.706219 - 0.0429858i) q^{30} -1.82398i q^{31} +(2.74316 - 4.94723i) q^{32} +(0.588419 - 0.588419i) q^{33} +(6.78664 - 0.379250i) q^{34} +(4.90978 - 4.95881i) q^{35} +(-5.86315 + 0.657339i) q^{36} +(7.13984 + 7.13984i) q^{37} +(3.72469 - 4.16562i) q^{38} +0.223739 q^{39} +(-5.17317 - 3.63845i) q^{40} -3.88345 q^{41} +(0.658191 - 0.736107i) q^{42} +(0.0375960 + 0.0375960i) q^{43} +(-7.39226 + 0.828773i) q^{44} +(0.0327749 + 6.59619i) q^{45} +(10.2936 - 0.575226i) q^{46} +(-6.34114 + 6.34114i) q^{47} +(-0.757256 - 0.476983i) q^{48} -2.73915i q^{49} +(-4.66062 + 5.31776i) q^{50} -1.07537i q^{51} +(-1.56297 - 1.24784i) q^{52} +(-0.298805 + 0.298805i) q^{53} +(0.105042 + 1.87972i) q^{54} +(0.0413226 + 8.31647i) q^{55} +(-8.70335 + 1.47134i) q^{56} +(-0.625127 - 0.625127i) q^{57} +(-2.75172 - 2.46046i) q^{58} -1.09335 q^{59} +(-0.620399 + 0.785043i) q^{60} -8.96596 q^{61} +(1.92291 + 1.71937i) q^{62} +(6.50967 + 6.50967i) q^{63} +(2.62972 + 7.55543i) q^{64} +(-1.57326 + 1.58898i) q^{65} +(0.0656614 + 1.17501i) q^{66} +(-7.47449 + 7.47449i) q^{67} +(-5.99759 + 7.51222i) q^{68} -1.63107i q^{69} +(0.599574 + 9.85048i) q^{70} -12.5380i q^{71} +(4.83389 - 6.80079i) q^{72} +(6.19988 - 6.19988i) q^{73} +(-14.2574 + 0.796731i) q^{74} +(0.798860 + 0.783139i) q^{75} +(0.880476 + 7.85342i) q^{76} +(8.20739 + 8.20739i) q^{77} +(-0.210907 + 0.235874i) q^{78} +16.4253 q^{79} +(8.71226 - 2.02397i) q^{80} -8.55197 q^{81} +(3.66072 - 4.09408i) q^{82} +(1.62581 + 1.62581i) q^{83} +(0.155589 + 1.38778i) q^{84} +(7.63720 + 7.56168i) q^{85} +(-0.0750748 + 0.00419532i) q^{86} +(-0.412946 + 0.412946i) q^{87} +(6.09457 - 8.57443i) q^{88} -1.23447i q^{89} +(-6.98484 - 6.18333i) q^{90} +3.12076i q^{91} +(-9.09683 + 11.3942i) q^{92} +(0.288568 - 0.288568i) q^{93} +(-0.707605 - 12.6625i) q^{94} +(8.83529 - 0.0439004i) q^{95} +(1.21668 - 0.348701i) q^{96} +(-11.5096 - 11.5096i) q^{97} +(2.88771 + 2.58205i) q^{98} -10.9717 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 8 q^{6} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 8 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 8 q^{16} + 28 q^{18} - 16 q^{21} - 8 q^{22} - 20 q^{28} - 32 q^{30} - 40 q^{32} + 16 q^{33} + 32 q^{36} - 12 q^{38} - 8 q^{40} - 40 q^{42} - 8 q^{46} + 60 q^{48} + 40 q^{50} + 8 q^{52} - 48 q^{53} + 8 q^{56} - 60 q^{58} + 20 q^{60} - 64 q^{61} + 60 q^{62} + 8 q^{66} - 16 q^{68} - 60 q^{70} + 40 q^{72} - 16 q^{73} - 72 q^{76} + 48 q^{77} - 20 q^{80} + 8 q^{81} - 12 q^{82} + 48 q^{85} + 48 q^{86} + 12 q^{88} + 44 q^{90} - 36 q^{92} + 16 q^{93} + 32 q^{96} - 80 q^{97} - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.942648 + 1.05424i −0.666552 + 0.745458i
\(3\) 0.158208 + 0.158208i 0.0913412 + 0.0913412i 0.751301 0.659960i \(-0.229427\pi\)
−0.659960 + 0.751301i \(0.729427\pi\)
\(4\) −0.222831 1.98755i −0.111416 0.993774i
\(5\) −2.23604 + 0.0111104i −0.999988 + 0.00496870i
\(6\) −0.315922 + 0.0176543i −0.128975 + 0.00720734i
\(7\) −2.20671 + 2.20671i −0.834058 + 0.834058i −0.988069 0.154011i \(-0.950781\pi\)
0.154011 + 0.988069i \(0.450781\pi\)
\(8\) 2.30540 + 1.63864i 0.815081 + 0.579347i
\(9\) 2.94994i 0.983314i
\(10\) 2.09608 2.36779i 0.662840 0.748761i
\(11\) 3.71929i 1.12141i −0.828017 0.560703i \(-0.810531\pi\)
0.828017 0.560703i \(-0.189469\pi\)
\(12\) 0.279192 0.349699i 0.0805957 0.100949i
\(13\) 0.707107 0.707107i 0.196116 0.196116i
\(14\) −0.246246 4.40655i −0.0658120 1.17770i
\(15\) −0.355516 0.352001i −0.0917940 0.0908863i
\(16\) −3.90069 + 0.885776i −0.975173 + 0.221444i
\(17\) −3.39861 3.39861i −0.824285 0.824285i 0.162435 0.986719i \(-0.448065\pi\)
−0.986719 + 0.162435i \(0.948065\pi\)
\(18\) 3.10994 + 2.78075i 0.733019 + 0.655430i
\(19\) −3.95131 −0.906493 −0.453246 0.891385i \(-0.649734\pi\)
−0.453246 + 0.891385i \(0.649734\pi\)
\(20\) 0.520342 + 4.44176i 0.116352 + 0.993208i
\(21\) −0.698237 −0.152368
\(22\) 3.92101 + 3.50597i 0.835962 + 0.747476i
\(23\) −5.15484 5.15484i −1.07486 1.07486i −0.996961 0.0778972i \(-0.975179\pi\)
−0.0778972 0.996961i \(-0.524821\pi\)
\(24\) 0.105486 + 0.623977i 0.0215323 + 0.127369i
\(25\) 4.99975 0.0496864i 0.999951 0.00993728i
\(26\) 0.0789057 + 1.41201i 0.0154747 + 0.276918i
\(27\) 0.941326 0.941326i 0.181158 0.181158i
\(28\) 4.87767 + 3.89422i 0.921793 + 0.735938i
\(29\) 2.61015i 0.484693i 0.970190 + 0.242347i \(0.0779172\pi\)
−0.970190 + 0.242347i \(0.922083\pi\)
\(30\) 0.706219 0.0429858i 0.128937 0.00784809i
\(31\) 1.82398i 0.327597i −0.986494 0.163798i \(-0.947625\pi\)
0.986494 0.163798i \(-0.0523747\pi\)
\(32\) 2.74316 4.94723i 0.484927 0.874555i
\(33\) 0.588419 0.588419i 0.102431 0.102431i
\(34\) 6.78664 0.379250i 1.16390 0.0650408i
\(35\) 4.90978 4.95881i 0.829904 0.838192i
\(36\) −5.86315 + 0.657339i −0.977191 + 0.109557i
\(37\) 7.13984 + 7.13984i 1.17378 + 1.17378i 0.981300 + 0.192482i \(0.0616538\pi\)
0.192482 + 0.981300i \(0.438346\pi\)
\(38\) 3.72469 4.16562i 0.604225 0.675752i
\(39\) 0.223739 0.0358270
\(40\) −5.17317 3.63845i −0.817950 0.575290i
\(41\) −3.88345 −0.606493 −0.303246 0.952912i \(-0.598071\pi\)
−0.303246 + 0.952912i \(0.598071\pi\)
\(42\) 0.658191 0.736107i 0.101561 0.113584i
\(43\) 0.0375960 + 0.0375960i 0.00573333 + 0.00573333i 0.709968 0.704234i \(-0.248710\pi\)
−0.704234 + 0.709968i \(0.748710\pi\)
\(44\) −7.39226 + 0.828773i −1.11442 + 0.124942i
\(45\) 0.0327749 + 6.59619i 0.00488579 + 0.983301i
\(46\) 10.2936 0.575226i 1.51771 0.0848125i
\(47\) −6.34114 + 6.34114i −0.924951 + 0.924951i −0.997374 0.0724230i \(-0.976927\pi\)
0.0724230 + 0.997374i \(0.476927\pi\)
\(48\) −0.757256 0.476983i −0.109300 0.0688465i
\(49\) 2.73915i 0.391306i
\(50\) −4.66062 + 5.31776i −0.659112 + 0.752045i
\(51\) 1.07537i 0.150582i
\(52\) −1.56297 1.24784i −0.216746 0.173045i
\(53\) −0.298805 + 0.298805i −0.0410440 + 0.0410440i −0.727331 0.686287i \(-0.759239\pi\)
0.686287 + 0.727331i \(0.259239\pi\)
\(54\) 0.105042 + 1.87972i 0.0142944 + 0.255797i
\(55\) 0.0413226 + 8.31647i 0.00557193 + 1.12139i
\(56\) −8.70335 + 1.47134i −1.16303 + 0.196616i
\(57\) −0.625127 0.625127i −0.0828002 0.0828002i
\(58\) −2.75172 2.46046i −0.361319 0.323074i
\(59\) −1.09335 −0.142342 −0.0711711 0.997464i \(-0.522674\pi\)
−0.0711711 + 0.997464i \(0.522674\pi\)
\(60\) −0.620399 + 0.785043i −0.0800931 + 0.101349i
\(61\) −8.96596 −1.14797 −0.573987 0.818865i \(-0.694604\pi\)
−0.573987 + 0.818865i \(0.694604\pi\)
\(62\) 1.92291 + 1.71937i 0.244210 + 0.218361i
\(63\) 6.50967 + 6.50967i 0.820141 + 0.820141i
\(64\) 2.62972 + 7.55543i 0.328715 + 0.944429i
\(65\) −1.57326 + 1.58898i −0.195139 + 0.197088i
\(66\) 0.0656614 + 1.17501i 0.00808236 + 0.144633i
\(67\) −7.47449 + 7.47449i −0.913155 + 0.913155i −0.996519 0.0833645i \(-0.973433\pi\)
0.0833645 + 0.996519i \(0.473433\pi\)
\(68\) −5.99759 + 7.51222i −0.727314 + 0.910991i
\(69\) 1.63107i 0.196358i
\(70\) 0.599574 + 9.85048i 0.0716628 + 1.17736i
\(71\) 12.5380i 1.48799i −0.668184 0.743996i \(-0.732928\pi\)
0.668184 0.743996i \(-0.267072\pi\)
\(72\) 4.83389 6.80079i 0.569679 0.801480i
\(73\) 6.19988 6.19988i 0.725641 0.725641i −0.244107 0.969748i \(-0.578495\pi\)
0.969748 + 0.244107i \(0.0784949\pi\)
\(74\) −14.2574 + 0.796731i −1.65739 + 0.0926181i
\(75\) 0.798860 + 0.783139i 0.0922444 + 0.0904290i
\(76\) 0.880476 + 7.85342i 0.100997 + 0.900849i
\(77\) 8.20739 + 8.20739i 0.935319 + 0.935319i
\(78\) −0.210907 + 0.235874i −0.0238806 + 0.0267075i
\(79\) 16.4253 1.84799 0.923994 0.382406i \(-0.124904\pi\)
0.923994 + 0.382406i \(0.124904\pi\)
\(80\) 8.71226 2.02397i 0.974061 0.226287i
\(81\) −8.55197 −0.950219
\(82\) 3.66072 4.09408i 0.404259 0.452115i
\(83\) 1.62581 + 1.62581i 0.178455 + 0.178455i 0.790682 0.612227i \(-0.209726\pi\)
−0.612227 + 0.790682i \(0.709726\pi\)
\(84\) 0.155589 + 1.38778i 0.0169762 + 0.151419i
\(85\) 7.63720 + 7.56168i 0.828370 + 0.820179i
\(86\) −0.0750748 + 0.00419532i −0.00809553 + 0.000452393i
\(87\) −0.412946 + 0.412946i −0.0442725 + 0.0442725i
\(88\) 6.09457 8.57443i 0.649683 0.914038i
\(89\) 1.23447i 0.130854i −0.997857 0.0654269i \(-0.979159\pi\)
0.997857 0.0654269i \(-0.0208409\pi\)
\(90\) −6.98484 6.18333i −0.736267 0.651780i
\(91\) 3.12076i 0.327145i
\(92\) −9.09683 + 11.3942i −0.948410 + 1.18792i
\(93\) 0.288568 0.288568i 0.0299231 0.0299231i
\(94\) −0.707605 12.6625i −0.0729839 1.30604i
\(95\) 8.83529 0.0439004i 0.906481 0.00450409i
\(96\) 1.21668 0.348701i 0.124177 0.0355891i
\(97\) −11.5096 11.5096i −1.16863 1.16863i −0.982532 0.186093i \(-0.940417\pi\)
−0.186093 0.982532i \(-0.559583\pi\)
\(98\) 2.88771 + 2.58205i 0.291703 + 0.260826i
\(99\) −10.9717 −1.10269
\(100\) −1.21286 9.92618i −0.121286 0.992618i
\(101\) 5.53619 0.550872 0.275436 0.961319i \(-0.411178\pi\)
0.275436 + 0.961319i \(0.411178\pi\)
\(102\) 1.13370 + 1.01370i 0.112253 + 0.100371i
\(103\) −8.21473 8.21473i −0.809421 0.809421i 0.175125 0.984546i \(-0.443967\pi\)
−0.984546 + 0.175125i \(0.943967\pi\)
\(104\) 2.78886 0.471469i 0.273470 0.0462314i
\(105\) 1.56129 0.00775766i 0.152366 0.000757070i
\(106\) −0.0333435 0.596679i −0.00323861 0.0579546i
\(107\) 0.375597 0.375597i 0.0363104 0.0363104i −0.688718 0.725029i \(-0.741826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(108\) −2.08069 1.66117i −0.200214 0.159847i
\(109\) 6.37721i 0.610826i 0.952220 + 0.305413i \(0.0987946\pi\)
−0.952220 + 0.305413i \(0.901205\pi\)
\(110\) −8.80648 7.79594i −0.839665 0.743313i
\(111\) 2.25916i 0.214430i
\(112\) 6.65305 10.5624i 0.628654 0.998048i
\(113\) 3.29961 3.29961i 0.310401 0.310401i −0.534664 0.845065i \(-0.679562\pi\)
0.845065 + 0.534664i \(0.179562\pi\)
\(114\) 1.24831 0.0697577i 0.116915 0.00653340i
\(115\) 11.5837 + 11.4692i 1.08019 + 1.06950i
\(116\) 5.18781 0.581624i 0.481676 0.0540025i
\(117\) −2.08592 2.08592i −0.192844 0.192844i
\(118\) 1.03065 1.15265i 0.0948786 0.106110i
\(119\) 14.9995 1.37500
\(120\) −0.242804 1.39407i −0.0221649 0.127260i
\(121\) −2.83308 −0.257553
\(122\) 8.45174 9.45225i 0.765185 0.855766i
\(123\) −0.614392 0.614392i −0.0553978 0.0553978i
\(124\) −3.62525 + 0.406441i −0.325557 + 0.0364994i
\(125\) −11.1791 + 0.166650i −0.999889 + 0.0149056i
\(126\) −12.9991 + 0.726410i −1.15805 + 0.0647138i
\(127\) 1.95951 1.95951i 0.173878 0.173878i −0.614803 0.788681i \(-0.710764\pi\)
0.788681 + 0.614803i \(0.210764\pi\)
\(128\) −10.4441 4.34976i −0.923138 0.384468i
\(129\) 0.0118959i 0.00104738i
\(130\) −0.192124 3.15644i −0.0168504 0.276838i
\(131\) 1.31295i 0.114713i −0.998354 0.0573563i \(-0.981733\pi\)
0.998354 0.0573563i \(-0.0182671\pi\)
\(132\) −1.30063 1.03839i −0.113205 0.0903805i
\(133\) 8.71940 8.71940i 0.756068 0.756068i
\(134\) −0.834075 14.9257i −0.0720531 1.28938i
\(135\) −2.09438 + 2.11530i −0.180256 + 0.182056i
\(136\) −2.26605 13.4043i −0.194312 1.14941i
\(137\) 3.17187 + 3.17187i 0.270992 + 0.270992i 0.829499 0.558508i \(-0.188626\pi\)
−0.558508 + 0.829499i \(0.688626\pi\)
\(138\) 1.71954 + 1.53752i 0.146377 + 0.130883i
\(139\) 18.9854 1.61032 0.805160 0.593058i \(-0.202080\pi\)
0.805160 + 0.593058i \(0.202080\pi\)
\(140\) −10.9499 8.65344i −0.925438 0.731349i
\(141\) −2.00644 −0.168972
\(142\) 13.2181 + 11.8190i 1.10924 + 0.991824i
\(143\) −2.62993 2.62993i −0.219926 0.219926i
\(144\) 2.61299 + 11.5068i 0.217749 + 0.958901i
\(145\) −0.0289997 5.83641i −0.00240830 0.484687i
\(146\) 0.691841 + 12.3804i 0.0572572 + 1.02461i
\(147\) 0.433354 0.433354i 0.0357424 0.0357424i
\(148\) 12.5998 15.7818i 1.03570 1.29725i
\(149\) 20.4040i 1.67156i −0.549061 0.835782i \(-0.685015\pi\)
0.549061 0.835782i \(-0.314985\pi\)
\(150\) −1.57866 + 0.103964i −0.128897 + 0.00848865i
\(151\) 5.45100i 0.443596i 0.975093 + 0.221798i \(0.0711926\pi\)
−0.975093 + 0.221798i \(0.928807\pi\)
\(152\) −9.10934 6.47477i −0.738865 0.525173i
\(153\) −10.0257 + 10.0257i −0.810530 + 0.810530i
\(154\) −16.3892 + 0.915858i −1.32068 + 0.0738020i
\(155\) 0.0202651 + 4.07850i 0.00162773 + 0.327593i
\(156\) −0.0498562 0.444693i −0.00399169 0.0356039i
\(157\) −8.11693 8.11693i −0.647801 0.647801i 0.304660 0.952461i \(-0.401457\pi\)
−0.952461 + 0.304660i \(0.901457\pi\)
\(158\) −15.4833 + 17.3161i −1.23178 + 1.37760i
\(159\) −0.0945465 −0.00749803
\(160\) −6.07885 + 11.0927i −0.480575 + 0.876953i
\(161\) 22.7505 1.79299
\(162\) 8.06149 9.01581i 0.633371 0.708349i
\(163\) −6.14842 6.14842i −0.481581 0.481581i 0.424055 0.905636i \(-0.360606\pi\)
−0.905636 + 0.424055i \(0.860606\pi\)
\(164\) 0.865355 + 7.71854i 0.0675728 + 0.602717i
\(165\) −1.30919 + 1.32227i −0.101920 + 0.102938i
\(166\) −3.24655 + 0.181423i −0.251981 + 0.0140812i
\(167\) 14.9835 14.9835i 1.15946 1.15946i 0.174864 0.984593i \(-0.444051\pi\)
0.984593 0.174864i \(-0.0559487\pi\)
\(168\) −1.60971 1.14416i −0.124192 0.0882738i
\(169\) 1.00000i 0.0769231i
\(170\) −15.1710 + 0.923419i −1.16356 + 0.0708230i
\(171\) 11.6561i 0.891366i
\(172\) 0.0663462 0.0831014i 0.00505885 0.00633642i
\(173\) −14.1569 + 14.1569i −1.07633 + 1.07633i −0.0794964 + 0.996835i \(0.525331\pi\)
−0.996835 + 0.0794964i \(0.974669\pi\)
\(174\) −0.0460805 0.824606i −0.00349335 0.0625132i
\(175\) −10.9234 + 11.1427i −0.825729 + 0.842305i
\(176\) 3.29445 + 14.5078i 0.248329 + 1.09357i
\(177\) −0.172977 0.172977i −0.0130017 0.0130017i
\(178\) 1.30143 + 1.16367i 0.0975460 + 0.0872209i
\(179\) 13.8558 1.03563 0.517817 0.855492i \(-0.326745\pi\)
0.517817 + 0.855492i \(0.326745\pi\)
\(180\) 13.1029 1.53498i 0.976635 0.114411i
\(181\) 8.60220 0.639397 0.319698 0.947519i \(-0.396418\pi\)
0.319698 + 0.947519i \(0.396418\pi\)
\(182\) −3.29002 2.94178i −0.243873 0.218059i
\(183\) −1.41848 1.41848i −0.104857 0.104857i
\(184\) −3.43703 20.3309i −0.253381 1.49881i
\(185\) −16.0443 15.8856i −1.17960 1.16794i
\(186\) 0.0322012 + 0.576237i 0.00236110 + 0.0422518i
\(187\) −12.6404 + 12.6404i −0.924358 + 0.924358i
\(188\) 14.0163 + 11.1903i 1.02225 + 0.816138i
\(189\) 4.15447i 0.302193i
\(190\) −8.28228 + 9.35587i −0.600860 + 0.678746i
\(191\) 0.459773i 0.0332680i 0.999862 + 0.0166340i \(0.00529501\pi\)
−0.999862 + 0.0166340i \(0.994705\pi\)
\(192\) −0.779286 + 1.61137i −0.0562401 + 0.116291i
\(193\) 4.92125 4.92125i 0.354239 0.354239i −0.507445 0.861684i \(-0.669410\pi\)
0.861684 + 0.507445i \(0.169410\pi\)
\(194\) 22.9834 1.28435i 1.65011 0.0922112i
\(195\) −0.500290 + 0.00248582i −0.0358265 + 0.000178014i
\(196\) −5.44418 + 0.610368i −0.388870 + 0.0435977i
\(197\) 13.8739 + 13.8739i 0.988476 + 0.988476i 0.999934 0.0114581i \(-0.00364731\pi\)
−0.0114581 + 0.999934i \(0.503647\pi\)
\(198\) 10.3424 11.5667i 0.735004 0.822012i
\(199\) −14.3199 −1.01511 −0.507554 0.861620i \(-0.669450\pi\)
−0.507554 + 0.861620i \(0.669450\pi\)
\(200\) 11.6078 + 8.07825i 0.820798 + 0.571218i
\(201\) −2.36504 −0.166817
\(202\) −5.21868 + 5.83646i −0.367185 + 0.410652i
\(203\) −5.75986 5.75986i −0.404263 0.404263i
\(204\) −2.13736 + 0.239627i −0.149645 + 0.0167772i
\(205\) 8.68355 0.0431465i 0.606485 0.00301348i
\(206\) 16.4039 0.916678i 1.14291 0.0638680i
\(207\) −15.2065 + 15.2065i −1.05692 + 1.05692i
\(208\) −2.13187 + 3.38454i −0.147818 + 0.234676i
\(209\) 14.6960i 1.01655i
\(210\) −1.46356 + 1.65328i −0.100996 + 0.114087i
\(211\) 21.8019i 1.50091i −0.660924 0.750453i \(-0.729836\pi\)
0.660924 0.750453i \(-0.270164\pi\)
\(212\) 0.660473 + 0.527306i 0.0453615 + 0.0362155i
\(213\) 1.98361 1.98361i 0.135915 0.135915i
\(214\) 0.0419127 + 0.750024i 0.00286509 + 0.0512706i
\(215\) −0.0844838 0.0836484i −0.00576175 0.00570478i
\(216\) 3.71263 0.627637i 0.252612 0.0427053i
\(217\) 4.02500 + 4.02500i 0.273235 + 0.273235i
\(218\) −6.72309 6.01146i −0.455345 0.407148i
\(219\) 1.96174 0.132562
\(220\) 16.5202 1.93530i 1.11379 0.130478i
\(221\) −4.80636 −0.323311
\(222\) −2.38169 2.12959i −0.159848 0.142929i
\(223\) −12.5947 12.5947i −0.843404 0.843404i 0.145896 0.989300i \(-0.453394\pi\)
−0.989300 + 0.145896i \(0.953394\pi\)
\(224\) 4.86374 + 16.9705i 0.324972 + 1.13389i
\(225\) −0.146572 14.7490i −0.00977146 0.983265i
\(226\) 0.368202 + 6.58894i 0.0244924 + 0.438290i
\(227\) −8.00497 + 8.00497i −0.531309 + 0.531309i −0.920962 0.389653i \(-0.872595\pi\)
0.389653 + 0.920962i \(0.372595\pi\)
\(228\) −1.10317 + 1.38177i −0.0730594 + 0.0915099i
\(229\) 20.4753i 1.35305i 0.736421 + 0.676523i \(0.236514\pi\)
−0.736421 + 0.676523i \(0.763486\pi\)
\(230\) −23.0106 + 1.40059i −1.51727 + 0.0923525i
\(231\) 2.59694i 0.170866i
\(232\) −4.27710 + 6.01744i −0.280806 + 0.395065i
\(233\) −4.88720 + 4.88720i −0.320171 + 0.320171i −0.848833 0.528662i \(-0.822694\pi\)
0.528662 + 0.848833i \(0.322694\pi\)
\(234\) 4.16535 0.232767i 0.272297 0.0152165i
\(235\) 14.1086 14.2495i 0.920344 0.929535i
\(236\) 0.243633 + 2.17309i 0.0158592 + 0.141456i
\(237\) 2.59861 + 2.59861i 0.168798 + 0.168798i
\(238\) −14.1393 + 15.8130i −0.916512 + 1.02501i
\(239\) −12.4349 −0.804347 −0.402174 0.915563i \(-0.631745\pi\)
−0.402174 + 0.915563i \(0.631745\pi\)
\(240\) 1.69855 + 1.05814i 0.109641 + 0.0683026i
\(241\) 16.7919 1.08166 0.540830 0.841132i \(-0.318110\pi\)
0.540830 + 0.841132i \(0.318110\pi\)
\(242\) 2.67060 2.98674i 0.171672 0.191995i
\(243\) −4.17697 4.17697i −0.267953 0.267953i
\(244\) 1.99790 + 17.8203i 0.127902 + 1.14083i
\(245\) 0.0304329 + 6.12484i 0.00194428 + 0.391302i
\(246\) 1.22687 0.0685597i 0.0782223 0.00437120i
\(247\) −2.79400 + 2.79400i −0.177778 + 0.177778i
\(248\) 2.98885 4.20501i 0.189792 0.267018i
\(249\) 0.514430i 0.0326007i
\(250\) 10.3623 11.9425i 0.655367 0.755311i
\(251\) 12.8842i 0.813244i −0.913596 0.406622i \(-0.866707\pi\)
0.913596 0.406622i \(-0.133293\pi\)
\(252\) 11.4877 14.3888i 0.723658 0.906411i
\(253\) −19.1723 + 19.1723i −1.20535 + 1.20535i
\(254\) 0.218660 + 3.91291i 0.0137200 + 0.245518i
\(255\) 0.0119478 + 2.40458i 0.000748199 + 0.150581i
\(256\) 14.4308 6.91028i 0.901925 0.431892i
\(257\) −15.0887 15.0887i −0.941207 0.941207i 0.0571585 0.998365i \(-0.481796\pi\)
−0.998365 + 0.0571585i \(0.981796\pi\)
\(258\) −0.0125411 0.0112137i −0.000780778 0.000698133i
\(259\) −31.5111 −1.95801
\(260\) 3.50874 + 2.77286i 0.217603 + 0.171966i
\(261\) 7.69980 0.476606
\(262\) 1.38416 + 1.23765i 0.0855135 + 0.0764620i
\(263\) 9.72534 + 9.72534i 0.599690 + 0.599690i 0.940230 0.340540i \(-0.110610\pi\)
−0.340540 + 0.940230i \(0.610610\pi\)
\(264\) 2.32075 0.392333i 0.142832 0.0241464i
\(265\) 0.664821 0.671460i 0.0408396 0.0412475i
\(266\) 0.972993 + 17.4116i 0.0596581 + 1.06758i
\(267\) 0.195303 0.195303i 0.0119523 0.0119523i
\(268\) 16.5215 + 13.1904i 1.00921 + 0.805729i
\(269\) 4.39890i 0.268205i 0.990967 + 0.134103i \(0.0428152\pi\)
−0.990967 + 0.134103i \(0.957185\pi\)
\(270\) −0.255763 4.20196i −0.0155652 0.255723i
\(271\) 25.4419i 1.54548i −0.634720 0.772742i \(-0.718884\pi\)
0.634720 0.772742i \(-0.281116\pi\)
\(272\) 16.2674 + 10.2465i 0.986353 + 0.621287i
\(273\) −0.493728 + 0.493728i −0.0298818 + 0.0298818i
\(274\) −6.33387 + 0.353948i −0.382643 + 0.0213828i
\(275\) −0.184798 18.5955i −0.0111437 1.12135i
\(276\) −3.24183 + 0.363454i −0.195135 + 0.0218773i
\(277\) 1.56210 + 1.56210i 0.0938575 + 0.0938575i 0.752477 0.658619i \(-0.228859\pi\)
−0.658619 + 0.752477i \(0.728859\pi\)
\(278\) −17.8965 + 20.0151i −1.07336 + 1.20043i
\(279\) −5.38064 −0.322131
\(280\) 19.4447 3.38668i 1.16204 0.202393i
\(281\) −2.00740 −0.119751 −0.0598757 0.998206i \(-0.519070\pi\)
−0.0598757 + 0.998206i \(0.519070\pi\)
\(282\) 1.89136 2.11526i 0.112629 0.125962i
\(283\) 12.4458 + 12.4458i 0.739827 + 0.739827i 0.972544 0.232717i \(-0.0747616\pi\)
−0.232717 + 0.972544i \(0.574762\pi\)
\(284\) −24.9200 + 2.79387i −1.47873 + 0.165786i
\(285\) 1.40476 + 1.39086i 0.0832105 + 0.0823877i
\(286\) 5.25167 0.293473i 0.310538 0.0173534i
\(287\) 8.56965 8.56965i 0.505850 0.505850i
\(288\) −14.5940 8.09216i −0.859962 0.476835i
\(289\) 6.10114i 0.358891i
\(290\) 6.18030 + 5.47111i 0.362919 + 0.321274i
\(291\) 3.64182i 0.213487i
\(292\) −13.7041 10.9410i −0.801971 0.640275i
\(293\) −2.07145 + 2.07145i −0.121016 + 0.121016i −0.765021 0.644005i \(-0.777271\pi\)
0.644005 + 0.765021i \(0.277271\pi\)
\(294\) 0.0483577 + 0.865357i 0.00282028 + 0.0504687i
\(295\) 2.44478 0.0121475i 0.142341 0.000707256i
\(296\) 4.76055 + 28.1598i 0.276701 + 1.63676i
\(297\) −3.50106 3.50106i −0.203152 0.203152i
\(298\) 21.5107 + 19.2338i 1.24608 + 1.11419i
\(299\) −7.29005 −0.421594
\(300\) 1.37851 1.76228i 0.0795885 0.101745i
\(301\) −0.165927 −0.00956387
\(302\) −5.74665 5.13837i −0.330682 0.295680i
\(303\) 0.875868 + 0.875868i 0.0503173 + 0.0503173i
\(304\) 15.4128 3.49998i 0.883987 0.200737i
\(305\) 20.0483 0.0996150i 1.14796 0.00570394i
\(306\) −1.11876 20.0202i −0.0639555 1.14448i
\(307\) 6.28267 6.28267i 0.358571 0.358571i −0.504715 0.863286i \(-0.668402\pi\)
0.863286 + 0.504715i \(0.168402\pi\)
\(308\) 14.4837 18.1414i 0.825286 1.03370i
\(309\) 2.59927i 0.147867i
\(310\) −4.31881 3.82322i −0.245292 0.217144i
\(311\) 18.7418i 1.06275i 0.847137 + 0.531375i \(0.178324\pi\)
−0.847137 + 0.531375i \(0.821676\pi\)
\(312\) 0.515808 + 0.366628i 0.0292019 + 0.0207562i
\(313\) 4.09503 4.09503i 0.231465 0.231465i −0.581839 0.813304i \(-0.697667\pi\)
0.813304 + 0.581839i \(0.197667\pi\)
\(314\) 16.2086 0.905764i 0.914703 0.0511152i
\(315\) −14.6282 14.4836i −0.824206 0.816056i
\(316\) −3.66007 32.6460i −0.205895 1.83648i
\(317\) −10.4527 10.4527i −0.587080 0.587080i 0.349760 0.936840i \(-0.386263\pi\)
−0.936840 + 0.349760i \(0.886263\pi\)
\(318\) 0.0891241 0.0996745i 0.00499783 0.00558947i
\(319\) 9.70791 0.543538
\(320\) −5.96410 16.8650i −0.333403 0.942784i
\(321\) 0.118845 0.00663327
\(322\) −21.4457 + 23.9844i −1.19512 + 1.33660i
\(323\) 13.4290 + 13.4290i 0.747208 + 0.747208i
\(324\) 1.90565 + 16.9975i 0.105869 + 0.944303i
\(325\) 3.50023 3.57049i 0.194158 0.198055i
\(326\) 12.2777 0.686099i 0.679998 0.0379995i
\(327\) −1.00892 + 1.00892i −0.0557936 + 0.0557936i
\(328\) −8.95290 6.36358i −0.494341 0.351370i
\(329\) 27.9861i 1.54293i
\(330\) −0.159876 2.62663i −0.00880090 0.144591i
\(331\) 12.5857i 0.691771i 0.938277 + 0.345886i \(0.112421\pi\)
−0.938277 + 0.345886i \(0.887579\pi\)
\(332\) 2.86909 3.59365i 0.157462 0.197227i
\(333\) 21.0621 21.0621i 1.15420 1.15420i
\(334\) 1.67200 + 29.9203i 0.0914878 + 1.63717i
\(335\) 16.6302 16.7963i 0.908606 0.917681i
\(336\) 2.72361 0.618482i 0.148585 0.0337409i
\(337\) −3.63810 3.63810i −0.198180 0.198180i 0.601039 0.799219i \(-0.294753\pi\)
−0.799219 + 0.601039i \(0.794753\pi\)
\(338\) 1.05424 + 0.942648i 0.0573429 + 0.0512733i
\(339\) 1.04405 0.0567049
\(340\) 13.3274 16.8643i 0.722779 0.914593i
\(341\) −6.78391 −0.367369
\(342\) −12.2883 10.9876i −0.664476 0.594142i
\(343\) −9.40247 9.40247i −0.507686 0.507686i
\(344\) 0.0250674 + 0.148280i 0.00135154 + 0.00799472i
\(345\) 0.0181218 + 3.64714i 0.000975643 + 0.196355i
\(346\) −1.57977 28.2698i −0.0849287 1.51979i
\(347\) 8.53370 8.53370i 0.458113 0.458113i −0.439923 0.898036i \(-0.644994\pi\)
0.898036 + 0.439923i \(0.144994\pi\)
\(348\) 0.912768 + 0.728733i 0.0489295 + 0.0390642i
\(349\) 13.3317i 0.713630i 0.934175 + 0.356815i \(0.116137\pi\)
−0.934175 + 0.356815i \(0.883863\pi\)
\(350\) −1.45011 22.0194i −0.0775118 1.17699i
\(351\) 1.33124i 0.0710561i
\(352\) −18.4002 10.2026i −0.980732 0.543800i
\(353\) −6.89939 + 6.89939i −0.367217 + 0.367217i −0.866461 0.499244i \(-0.833611\pi\)
0.499244 + 0.866461i \(0.333611\pi\)
\(354\) 0.345414 0.0193024i 0.0183586 0.00102591i
\(355\) 0.139302 + 28.0356i 0.00739338 + 1.48797i
\(356\) −2.45357 + 0.275079i −0.130039 + 0.0145792i
\(357\) 2.37304 + 2.37304i 0.125594 + 0.125594i
\(358\) −13.0612 + 14.6073i −0.690304 + 0.772021i
\(359\) −36.9920 −1.95236 −0.976181 0.216959i \(-0.930386\pi\)
−0.976181 + 0.216959i \(0.930386\pi\)
\(360\) −10.7332 + 15.2605i −0.565690 + 0.804301i
\(361\) −3.38715 −0.178271
\(362\) −8.10885 + 9.06876i −0.426192 + 0.476644i
\(363\) −0.448215 0.448215i −0.0235252 0.0235252i
\(364\) 6.20266 0.695403i 0.325108 0.0364490i
\(365\) −13.7943 + 13.9321i −0.722026 + 0.729237i
\(366\) 2.83255 0.158288i 0.148060 0.00827384i
\(367\) −19.5766 + 19.5766i −1.02189 + 1.02189i −0.0221373 + 0.999755i \(0.507047\pi\)
−0.999755 + 0.0221373i \(0.992953\pi\)
\(368\) 24.6735 + 15.5414i 1.28619 + 0.810152i
\(369\) 11.4559i 0.596373i
\(370\) 31.8714 1.93993i 1.65691 0.100852i
\(371\) 1.31875i 0.0684663i
\(372\) −0.637845 0.509241i −0.0330707 0.0264029i
\(373\) 7.21316 7.21316i 0.373483 0.373483i −0.495261 0.868744i \(-0.664928\pi\)
0.868744 + 0.495261i \(0.164928\pi\)
\(374\) −1.41054 25.2414i −0.0729372 1.30520i
\(375\) −1.79498 1.74225i −0.0926926 0.0899696i
\(376\) −25.0097 + 4.22801i −1.28978 + 0.218043i
\(377\) 1.84566 + 1.84566i 0.0950562 + 0.0950562i
\(378\) −4.37980 3.91620i −0.225272 0.201428i
\(379\) 8.59778 0.441638 0.220819 0.975315i \(-0.429127\pi\)
0.220819 + 0.975315i \(0.429127\pi\)
\(380\) −2.05603 17.5508i −0.105472 0.900336i
\(381\) 0.620018 0.0317645
\(382\) −0.484709 0.433403i −0.0247999 0.0221748i
\(383\) 4.02733 + 4.02733i 0.205787 + 0.205787i 0.802474 0.596687i \(-0.203517\pi\)
−0.596687 + 0.802474i \(0.703517\pi\)
\(384\) −0.964173 2.34051i −0.0492028 0.119438i
\(385\) −18.4432 18.2609i −0.939954 0.930660i
\(386\) 0.549160 + 9.82717i 0.0279515 + 0.500190i
\(387\) 0.110906 0.110906i 0.00563766 0.00563766i
\(388\) −20.3112 + 25.4406i −1.03115 + 1.29155i
\(389\) 0.970610i 0.0492119i −0.999697 0.0246059i \(-0.992167\pi\)
0.999697 0.0246059i \(-0.00783310\pi\)
\(390\) 0.468977 0.529768i 0.0237476 0.0268258i
\(391\) 35.0386i 1.77198i
\(392\) 4.48847 6.31482i 0.226702 0.318947i
\(393\) 0.207718 0.207718i 0.0104780 0.0104780i
\(394\) −27.7046 + 1.54818i −1.39574 + 0.0779964i
\(395\) −36.7276 + 0.182491i −1.84797 + 0.00918210i
\(396\) 2.44483 + 21.8067i 0.122857 + 1.09583i
\(397\) −12.3155 12.3155i −0.618095 0.618095i 0.326947 0.945043i \(-0.393980\pi\)
−0.945043 + 0.326947i \(0.893980\pi\)
\(398\) 13.4986 15.0965i 0.676623 0.756721i
\(399\) 2.75895 0.138120
\(400\) −19.4585 + 4.62247i −0.972924 + 0.231124i
\(401\) 25.2740 1.26212 0.631062 0.775732i \(-0.282619\pi\)
0.631062 + 0.775732i \(0.282619\pi\)
\(402\) 2.22940 2.49332i 0.111193 0.124355i
\(403\) −1.28975 1.28975i −0.0642471 0.0642471i
\(404\) −1.23364 11.0035i −0.0613758 0.547442i
\(405\) 19.1226 0.0950154i 0.950207 0.00472135i
\(406\) 11.5018 0.642740i 0.570823 0.0318986i
\(407\) 26.5551 26.5551i 1.31629 1.31629i
\(408\) 1.76215 2.47916i 0.0872394 0.122737i
\(409\) 4.10429i 0.202944i 0.994838 + 0.101472i \(0.0323552\pi\)
−0.994838 + 0.101472i \(0.967645\pi\)
\(410\) −8.14004 + 9.19519i −0.402008 + 0.454118i
\(411\) 1.00363i 0.0495054i
\(412\) −14.4967 + 18.1577i −0.714199 + 0.894564i
\(413\) 2.41271 2.41271i 0.118722 0.118722i
\(414\) −1.69688 30.3656i −0.0833973 1.49239i
\(415\) −3.65343 3.61731i −0.179340 0.177567i
\(416\) −1.55851 5.43793i −0.0764123 0.266616i
\(417\) 3.00363 + 3.00363i 0.147089 + 0.147089i
\(418\) −15.4931 13.8532i −0.757793 0.677582i
\(419\) 17.3311 0.846680 0.423340 0.905971i \(-0.360858\pi\)
0.423340 + 0.905971i \(0.360858\pi\)
\(420\) −0.363322 3.10140i −0.0177283 0.151333i
\(421\) −34.0343 −1.65873 −0.829364 0.558708i \(-0.811297\pi\)
−0.829364 + 0.558708i \(0.811297\pi\)
\(422\) 22.9844 + 20.5515i 1.11886 + 1.00043i
\(423\) 18.7060 + 18.7060i 0.909517 + 0.909517i
\(424\) −1.17850 + 0.199231i −0.0572330 + 0.00967550i
\(425\) −17.1611 16.8234i −0.832435 0.816053i
\(426\) 0.221351 + 3.96105i 0.0107245 + 0.191913i
\(427\) 19.7853 19.7853i 0.957477 0.957477i
\(428\) −0.830212 0.662823i −0.0401298 0.0320387i
\(429\) 0.832151i 0.0401766i
\(430\) 0.167824 0.0102150i 0.00809318 0.000492611i
\(431\) 11.8497i 0.570781i −0.958411 0.285390i \(-0.907877\pi\)
0.958411 0.285390i \(-0.0921232\pi\)
\(432\) −2.83802 + 4.50563i −0.136544 + 0.216777i
\(433\) −9.87468 + 9.87468i −0.474547 + 0.474547i −0.903382 0.428836i \(-0.858924\pi\)
0.428836 + 0.903382i \(0.358924\pi\)
\(434\) −8.03746 + 0.449148i −0.385811 + 0.0215598i
\(435\) 0.918777 0.927953i 0.0440520 0.0444919i
\(436\) 12.6750 1.42104i 0.607023 0.0680556i
\(437\) 20.3684 + 20.3684i 0.974351 + 0.974351i
\(438\) −1.84923 + 2.06814i −0.0883594 + 0.0988193i
\(439\) 13.8583 0.661418 0.330709 0.943733i \(-0.392712\pi\)
0.330709 + 0.943733i \(0.392712\pi\)
\(440\) −13.5324 + 19.2405i −0.645134 + 0.917254i
\(441\) −8.08032 −0.384777
\(442\) 4.53071 5.06705i 0.215504 0.241015i
\(443\) 7.77783 + 7.77783i 0.369536 + 0.369536i 0.867308 0.497772i \(-0.165848\pi\)
−0.497772 + 0.867308i \(0.665848\pi\)
\(444\) 4.49018 0.503411i 0.213094 0.0238908i
\(445\) 0.0137154 + 2.76033i 0.000650173 + 0.130852i
\(446\) 25.1502 1.40544i 1.19090 0.0665494i
\(447\) 3.22808 3.22808i 0.152683 0.152683i
\(448\) −22.4757 10.8696i −1.06188 0.513542i
\(449\) 27.3178i 1.28921i −0.764516 0.644604i \(-0.777022\pi\)
0.764516 0.644604i \(-0.222978\pi\)
\(450\) 15.6871 + 13.7486i 0.739496 + 0.648113i
\(451\) 14.4437i 0.680125i
\(452\) −7.29339 5.82288i −0.343052 0.273885i
\(453\) −0.862390 + 0.862390i −0.0405186 + 0.0405186i
\(454\) −0.893271 15.9850i −0.0419233 0.750213i
\(455\) −0.0346727 6.97815i −0.00162548 0.327141i
\(456\) −0.416809 2.46553i −0.0195189 0.115459i
\(457\) −29.4423 29.4423i −1.37725 1.37725i −0.849234 0.528016i \(-0.822936\pi\)
−0.528016 0.849234i \(-0.677064\pi\)
\(458\) −21.5858 19.3010i −1.00864 0.901876i
\(459\) −6.39841 −0.298652
\(460\) 20.2143 25.5789i 0.942496 1.19262i
\(461\) 11.5928 0.539932 0.269966 0.962870i \(-0.412988\pi\)
0.269966 + 0.962870i \(0.412988\pi\)
\(462\) −2.73779 2.44800i −0.127374 0.113891i
\(463\) −14.0309 14.0309i −0.652069 0.652069i 0.301422 0.953491i \(-0.402539\pi\)
−0.953491 + 0.301422i \(0.902539\pi\)
\(464\) −2.31201 10.1814i −0.107332 0.472660i
\(465\) −0.642044 + 0.648456i −0.0297741 + 0.0300714i
\(466\) −0.545360 9.75917i −0.0252633 0.452085i
\(467\) 1.57290 1.57290i 0.0727851 0.0727851i −0.669777 0.742562i \(-0.733610\pi\)
0.742562 + 0.669777i \(0.233610\pi\)
\(468\) −3.68106 + 4.61068i −0.170157 + 0.213129i
\(469\) 32.9881i 1.52325i
\(470\) 1.72292 + 28.3061i 0.0794723 + 1.30566i
\(471\) 2.56832i 0.118342i
\(472\) −2.52061 1.79161i −0.116021 0.0824655i
\(473\) 0.139830 0.139830i 0.00642940 0.00642940i
\(474\) −5.18912 + 0.289977i −0.238344 + 0.0133191i
\(475\) −19.7556 + 0.196326i −0.906448 + 0.00900807i
\(476\) −3.34236 29.8122i −0.153197 1.36644i
\(477\) 0.881457 + 0.881457i 0.0403592 + 0.0403592i
\(478\) 11.7217 13.1093i 0.536139 0.599607i
\(479\) 20.3724 0.930838 0.465419 0.885091i \(-0.345904\pi\)
0.465419 + 0.885091i \(0.345904\pi\)
\(480\) −2.71667 + 0.793226i −0.123998 + 0.0362057i
\(481\) 10.0973 0.460395
\(482\) −15.8288 + 17.7026i −0.720984 + 0.806333i
\(483\) 3.59930 + 3.59930i 0.163774 + 0.163774i
\(484\) 0.631299 + 5.63088i 0.0286954 + 0.255949i
\(485\) 25.8639 + 25.6081i 1.17442 + 1.16280i
\(486\) 8.34092 0.466106i 0.378352 0.0211430i
\(487\) −4.34315 + 4.34315i −0.196807 + 0.196807i −0.798630 0.601823i \(-0.794441\pi\)
0.601823 + 0.798630i \(0.294441\pi\)
\(488\) −20.6701 14.6920i −0.935692 0.665075i
\(489\) 1.94545i 0.0879765i
\(490\) −6.48572 5.74148i −0.292995 0.259374i
\(491\) 15.6199i 0.704915i 0.935828 + 0.352457i \(0.114654\pi\)
−0.935828 + 0.352457i \(0.885346\pi\)
\(492\) −1.08423 + 1.35804i −0.0488807 + 0.0612251i
\(493\) 8.87090 8.87090i 0.399525 0.399525i
\(494\) −0.311781 5.57929i −0.0140277 0.251024i
\(495\) 24.5331 0.121899i 1.10268 0.00547896i
\(496\) 1.61564 + 7.11480i 0.0725444 + 0.319464i
\(497\) 27.6678 + 27.6678i 1.24107 + 1.24107i
\(498\) −0.542331 0.484926i −0.0243024 0.0217301i
\(499\) 30.6893 1.37384 0.686921 0.726732i \(-0.258962\pi\)
0.686921 + 0.726732i \(0.258962\pi\)
\(500\) 2.82228 + 22.1819i 0.126216 + 0.992003i
\(501\) 4.74100 0.211812
\(502\) 13.5830 + 12.1453i 0.606239 + 0.542070i
\(503\) 27.4226 + 27.4226i 1.22272 + 1.22272i 0.966663 + 0.256052i \(0.0824219\pi\)
0.256052 + 0.966663i \(0.417578\pi\)
\(504\) 4.34037 + 25.6744i 0.193336 + 1.14363i
\(505\) −12.3792 + 0.0615091i −0.550865 + 0.00273712i
\(506\) −2.13943 38.2849i −0.0951093 1.70197i
\(507\) 0.158208 0.158208i 0.00702625 0.00702625i
\(508\) −4.33125 3.45797i −0.192168 0.153423i
\(509\) 0.576260i 0.0255423i −0.999918 0.0127711i \(-0.995935\pi\)
0.999918 0.0127711i \(-0.00406529\pi\)
\(510\) −2.54626 2.25407i −0.112750 0.0998121i
\(511\) 27.3627i 1.21045i
\(512\) −6.31809 + 21.7274i −0.279223 + 0.960226i
\(513\) −3.71947 + 3.71947i −0.164219 + 0.164219i
\(514\) 30.1304 1.68374i 1.32899 0.0742666i
\(515\) 18.4597 + 18.2772i 0.813433 + 0.805389i
\(516\) 0.0236438 0.00265079i 0.00104086 0.000116695i
\(517\) 23.5845 + 23.5845i 1.03725 + 1.03725i
\(518\) 29.7039 33.2202i 1.30511 1.45961i
\(519\) −4.47947 −0.196627
\(520\) −6.23076 + 1.08521i −0.273237 + 0.0475896i
\(521\) 9.21378 0.403663 0.201832 0.979420i \(-0.435311\pi\)
0.201832 + 0.979420i \(0.435311\pi\)
\(522\) −7.25820 + 8.11741i −0.317683 + 0.355290i
\(523\) 4.26927 + 4.26927i 0.186682 + 0.186682i 0.794260 0.607578i \(-0.207859\pi\)
−0.607578 + 0.794260i \(0.707859\pi\)
\(524\) −2.60954 + 0.292566i −0.113998 + 0.0127808i
\(525\) −3.49101 + 0.0346929i −0.152360 + 0.00151412i
\(526\) −19.4204 + 1.08525i −0.846769 + 0.0473190i
\(527\) −6.19901 + 6.19901i −0.270033 + 0.270033i
\(528\) −1.77404 + 2.81645i −0.0772050 + 0.122570i
\(529\) 30.1448i 1.31064i
\(530\) 0.0811868 + 1.33383i 0.00352653 + 0.0579378i
\(531\) 3.22532i 0.139967i
\(532\) −19.2732 15.3873i −0.835598 0.667122i
\(533\) −2.74601 + 2.74601i −0.118943 + 0.118943i
\(534\) 0.0217938 + 0.389997i 0.000943108 + 0.0168768i
\(535\) −0.835678 + 0.844024i −0.0361295 + 0.0364903i
\(536\) −29.4797 + 4.98368i −1.27333 + 0.215262i
\(537\) 2.19210 + 2.19210i 0.0945960 + 0.0945960i
\(538\) −4.63748 4.14661i −0.199936 0.178773i
\(539\) −10.1877 −0.438814
\(540\) 4.67096 + 3.69133i 0.201006 + 0.158850i
\(541\) −27.1373 −1.16672 −0.583362 0.812212i \(-0.698263\pi\)
−0.583362 + 0.812212i \(0.698263\pi\)
\(542\) 26.8218 + 23.9827i 1.15209 + 1.03015i
\(543\) 1.36093 + 1.36093i 0.0584033 + 0.0584033i
\(544\) −26.1367 + 7.49078i −1.12060 + 0.321164i
\(545\) −0.0708531 14.2597i −0.00303501 0.610819i
\(546\) −0.0550949 0.985918i −0.00235784 0.0421934i
\(547\) 24.4699 24.4699i 1.04626 1.04626i 0.0473783 0.998877i \(-0.484913\pi\)
0.998877 0.0473783i \(-0.0150866\pi\)
\(548\) 5.59746 7.01104i 0.239112 0.299497i
\(549\) 26.4491i 1.12882i
\(550\) 19.7783 + 17.3342i 0.843348 + 0.739132i
\(551\) 10.3135i 0.439371i
\(552\) 2.67274 3.76027i 0.113759 0.160048i
\(553\) −36.2459 + 36.2459i −1.54133 + 1.54133i
\(554\) −3.11933 + 0.174314i −0.132528 + 0.00740590i
\(555\) −0.0251000 5.05156i −0.00106544 0.214427i
\(556\) −4.23054 37.7344i −0.179415 1.60029i
\(557\) −12.4542 12.4542i −0.527702 0.527702i 0.392185 0.919886i \(-0.371719\pi\)
−0.919886 + 0.392185i \(0.871719\pi\)
\(558\) 5.07205 5.67247i 0.214717 0.240135i
\(559\) 0.0531687 0.00224880
\(560\) −14.7591 + 23.6918i −0.623687 + 1.00116i
\(561\) −3.99962 −0.168864
\(562\) 1.89227 2.11628i 0.0798206 0.0892697i
\(563\) −10.1639 10.1639i −0.428355 0.428355i 0.459712 0.888068i \(-0.347952\pi\)
−0.888068 + 0.459712i \(0.847952\pi\)
\(564\) 0.447097 + 3.98789i 0.0188262 + 0.167920i
\(565\) −7.34140 + 7.41472i −0.308855 + 0.311940i
\(566\) −24.8529 + 1.38882i −1.04464 + 0.0583766i
\(567\) 18.8717 18.8717i 0.792538 0.792538i
\(568\) 20.5453 28.9052i 0.862063 1.21283i
\(569\) 22.9141i 0.960611i 0.877101 + 0.480305i \(0.159474\pi\)
−0.877101 + 0.480305i \(0.840526\pi\)
\(570\) −2.79049 + 0.169850i −0.116881 + 0.00711424i
\(571\) 9.44141i 0.395111i 0.980292 + 0.197555i \(0.0633002\pi\)
−0.980292 + 0.197555i \(0.936700\pi\)
\(572\) −4.64108 + 5.81315i −0.194053 + 0.243060i
\(573\) −0.0727395 + 0.0727395i −0.00303874 + 0.00303874i
\(574\) 0.956283 + 17.1126i 0.0399145 + 0.714266i
\(575\) −26.0291 25.5168i −1.08549 1.06412i
\(576\) 22.2881 7.75751i 0.928670 0.323230i
\(577\) 19.0322 + 19.0322i 0.792322 + 0.792322i 0.981871 0.189549i \(-0.0607027\pi\)
−0.189549 + 0.981871i \(0.560703\pi\)
\(578\) −6.43205 5.75123i −0.267538 0.239219i
\(579\) 1.55716 0.0647133
\(580\) −11.5937 + 1.35817i −0.481401 + 0.0563951i
\(581\) −7.17537 −0.297684
\(582\) 3.83934 + 3.43295i 0.159146 + 0.142301i
\(583\) 1.11134 + 1.11134i 0.0460271 + 0.0460271i
\(584\) 24.4526 4.13382i 1.01185 0.171059i
\(585\) 4.68738 + 4.64103i 0.193799 + 0.191883i
\(586\) −0.231153 4.13646i −0.00954883 0.170875i
\(587\) 5.91988 5.91988i 0.244340 0.244340i −0.574303 0.818643i \(-0.694727\pi\)
0.818643 + 0.574303i \(0.194727\pi\)
\(588\) −0.957876 0.764747i −0.0395021 0.0315376i
\(589\) 7.20712i 0.296964i
\(590\) −2.29176 + 2.58883i −0.0943502 + 0.106580i
\(591\) 4.38992i 0.180577i
\(592\) −34.1746 21.5260i −1.40457 0.884714i
\(593\) 0.153391 0.153391i 0.00629903 0.00629903i −0.703950 0.710249i \(-0.748582\pi\)
0.710249 + 0.703950i \(0.248582\pi\)
\(594\) 6.99121 0.390682i 0.286853 0.0160299i
\(595\) −33.5395 + 0.166650i −1.37499 + 0.00683198i
\(596\) −40.5540 + 4.54666i −1.66116 + 0.186238i
\(597\) −2.26551 2.26551i −0.0927212 0.0927212i
\(598\) 6.87194 7.68544i 0.281015 0.314281i
\(599\) −10.5262 −0.430090 −0.215045 0.976604i \(-0.568990\pi\)
−0.215045 + 0.976604i \(0.568990\pi\)
\(600\) 0.558408 + 3.11449i 0.0227969 + 0.127149i
\(601\) 8.71802 0.355615 0.177808 0.984065i \(-0.443100\pi\)
0.177808 + 0.984065i \(0.443100\pi\)
\(602\) 0.156411 0.174926i 0.00637482 0.00712946i
\(603\) 22.0493 + 22.0493i 0.897917 + 0.897917i
\(604\) 10.8341 1.21465i 0.440834 0.0494236i
\(605\) 6.33488 0.0314765i 0.257550 0.00127970i
\(606\) −1.74901 + 0.0977377i −0.0710486 + 0.00397032i
\(607\) 11.7759 11.7759i 0.477969 0.477969i −0.426512 0.904482i \(-0.640258\pi\)
0.904482 + 0.426512i \(0.140258\pi\)
\(608\) −10.8391 + 19.5480i −0.439583 + 0.792777i
\(609\) 1.82251i 0.0738517i
\(610\) −18.7934 + 21.2295i −0.760923 + 0.859558i
\(611\) 8.96773i 0.362796i
\(612\) 22.1606 + 17.6925i 0.895790 + 0.715178i
\(613\) 11.0213 11.0213i 0.445145 0.445145i −0.448592 0.893737i \(-0.648074\pi\)
0.893737 + 0.448592i \(0.148074\pi\)
\(614\) 0.701080 + 12.5458i 0.0282933 + 0.506306i
\(615\) 1.38063 + 1.36698i 0.0556724 + 0.0551219i
\(616\) 5.47234 + 32.3702i 0.220487 + 1.30423i
\(617\) −7.98214 7.98214i −0.321349 0.321349i 0.527936 0.849284i \(-0.322966\pi\)
−0.849284 + 0.527936i \(0.822966\pi\)
\(618\) 2.74024 + 2.45019i 0.110229 + 0.0985612i
\(619\) −36.9943 −1.48693 −0.743464 0.668776i \(-0.766819\pi\)
−0.743464 + 0.668776i \(0.766819\pi\)
\(620\) 8.10170 0.949095i 0.325372 0.0381166i
\(621\) −9.70477 −0.389439
\(622\) −19.7583 17.6669i −0.792235 0.708378i
\(623\) 2.72412 + 2.72412i 0.109140 + 0.109140i
\(624\) −0.872739 + 0.198183i −0.0349375 + 0.00793367i
\(625\) 24.9951 0.496839i 0.999803 0.0198736i
\(626\) 0.456962 + 8.17730i 0.0182639 + 0.326831i
\(627\) −2.32503 + 2.32503i −0.0928526 + 0.0928526i
\(628\) −14.3241 + 17.9415i −0.571593 + 0.715943i
\(629\) 48.5311i 1.93506i
\(630\) 29.0583 1.76871i 1.15771 0.0704670i
\(631\) 16.5387i 0.658396i −0.944261 0.329198i \(-0.893222\pi\)
0.944261 0.329198i \(-0.106778\pi\)
\(632\) 37.8668 + 26.9151i 1.50626 + 1.07063i
\(633\) 3.44923 3.44923i 0.137095 0.137095i
\(634\) 20.8728 1.16641i 0.828963 0.0463240i
\(635\) −4.35976 + 4.40331i −0.173012 + 0.174740i
\(636\) 0.0210679 + 0.187916i 0.000835398 + 0.00745134i
\(637\) −1.93687 1.93687i −0.0767415 0.0767415i
\(638\) −9.15114 + 10.2344i −0.362297 + 0.405185i
\(639\) −36.9865 −1.46316
\(640\) 23.4018 + 9.61021i 0.925037 + 0.379877i
\(641\) 31.3698 1.23903 0.619516 0.784984i \(-0.287329\pi\)
0.619516 + 0.784984i \(0.287329\pi\)
\(642\) −0.112029 + 0.125291i −0.00442142 + 0.00494482i
\(643\) 6.29933 + 6.29933i 0.248421 + 0.248421i 0.820323 0.571901i \(-0.193794\pi\)
−0.571901 + 0.820323i \(0.693794\pi\)
\(644\) −5.06952 45.2177i −0.199767 1.78183i
\(645\) −0.000132168 0.0265998i −5.20411e−6 0.00104737i
\(646\) −26.8161 + 1.49853i −1.05507 + 0.0589590i
\(647\) −21.4178 + 21.4178i −0.842019 + 0.842019i −0.989121 0.147102i \(-0.953005\pi\)
0.147102 + 0.989121i \(0.453005\pi\)
\(648\) −19.7157 14.0136i −0.774506 0.550506i
\(649\) 4.06649i 0.159624i
\(650\) 0.464667 + 7.05578i 0.0182257 + 0.276751i
\(651\) 1.27357i 0.0499152i
\(652\) −10.8502 + 13.5903i −0.424927 + 0.532239i
\(653\) 20.3186 20.3186i 0.795129 0.795129i −0.187194 0.982323i \(-0.559939\pi\)
0.982323 + 0.187194i \(0.0599393\pi\)
\(654\) −0.112585 2.01470i −0.00440244 0.0787812i
\(655\) 0.0145873 + 2.93580i 0.000569973 + 0.114711i
\(656\) 15.1481 3.43987i 0.591436 0.134304i
\(657\) −18.2893 18.2893i −0.713533 0.713533i
\(658\) 29.5040 + 26.3811i 1.15019 + 1.02844i
\(659\) −8.42213 −0.328080 −0.164040 0.986454i \(-0.552453\pi\)
−0.164040 + 0.986454i \(0.552453\pi\)
\(660\) 2.91980 + 2.30744i 0.113653 + 0.0898169i
\(661\) −37.3044 −1.45097 −0.725487 0.688236i \(-0.758385\pi\)
−0.725487 + 0.688236i \(0.758385\pi\)
\(662\) −13.2683 11.8639i −0.515687 0.461102i
\(663\) −0.760404 0.760404i −0.0295316 0.0295316i
\(664\) 1.08402 + 6.41224i 0.0420681 + 0.248843i
\(665\) −19.4000 + 19.5938i −0.752302 + 0.759815i
\(666\) 2.35031 + 42.0586i 0.0910727 + 1.62974i
\(667\) 13.4549 13.4549i 0.520977 0.520977i
\(668\) −33.1192 26.4416i −1.28142 1.02306i
\(669\) 3.98516i 0.154075i
\(670\) 2.03086 + 33.3652i 0.0784588 + 1.28901i
\(671\) 33.3470i 1.28735i
\(672\) −1.91538 + 3.45434i −0.0738872 + 0.133254i
\(673\) 25.8606 25.8606i 0.996852 0.996852i −0.00314279 0.999995i \(-0.501000\pi\)
0.999995 + 0.00314279i \(0.00100038\pi\)
\(674\) 7.26487 0.405974i 0.279832 0.0156375i
\(675\) 4.65963 4.75317i 0.179349 0.182950i
\(676\) −1.98755 + 0.222831i −0.0764441 + 0.00857044i
\(677\) −5.32981 5.32981i −0.204841 0.204841i 0.597229 0.802071i \(-0.296268\pi\)
−0.802071 + 0.597229i \(0.796268\pi\)
\(678\) −0.984168 + 1.10067i −0.0377968 + 0.0422711i
\(679\) 50.7968 1.94940
\(680\) 5.21591 + 29.9473i 0.200021 + 1.14843i
\(681\) −2.53290 −0.0970608
\(682\) 6.39484 7.15185i 0.244871 0.273859i
\(683\) −27.1424 27.1424i −1.03858 1.03858i −0.999225 0.0393508i \(-0.987471\pi\)
−0.0393508 0.999225i \(-0.512529\pi\)
\(684\) 23.1671 2.59735i 0.885817 0.0993122i
\(685\) −7.12768 7.05720i −0.272335 0.269642i
\(686\) 18.7757 1.04922i 0.716858 0.0400593i
\(687\) −3.23935 + 3.23935i −0.123589 + 0.123589i
\(688\) −0.179952 0.113349i −0.00686060 0.00432138i
\(689\) 0.422574i 0.0160988i
\(690\) −3.86203 3.41886i −0.147025 0.130154i
\(691\) 37.3273i 1.42000i 0.704203 + 0.709999i \(0.251305\pi\)
−0.704203 + 0.709999i \(0.748695\pi\)
\(692\) 31.2922 + 24.9830i 1.18955 + 0.949710i
\(693\) 24.2113 24.2113i 0.919711 0.919711i
\(694\) 0.952272 + 17.0408i 0.0361477 + 0.646861i
\(695\) −42.4521 + 0.210934i −1.61030 + 0.00800119i
\(696\) −1.62868 + 0.275335i −0.0617348 + 0.0104366i
\(697\) 13.1983 + 13.1983i 0.499923 + 0.499923i
\(698\) −14.0548 12.5671i −0.531981 0.475672i
\(699\) −1.54638 −0.0584896
\(700\) 24.5806 + 19.2278i 0.929060 + 0.726742i
\(701\) −50.6132 −1.91164 −0.955818 0.293960i \(-0.905027\pi\)
−0.955818 + 0.293960i \(0.905027\pi\)
\(702\) 1.40344 + 1.25489i 0.0529694 + 0.0473626i
\(703\) −28.2117 28.2117i −1.06403 1.06403i
\(704\) 28.1008 9.78067i 1.05909 0.368623i
\(705\) 4.48647 0.0222922i 0.168970 0.000839573i
\(706\) −0.769900 13.7773i −0.0289756 0.518515i
\(707\) −12.2168 + 12.2168i −0.459459 + 0.459459i
\(708\) −0.305255 + 0.382344i −0.0114722 + 0.0143694i
\(709\) 22.5087i 0.845331i −0.906286 0.422665i \(-0.861095\pi\)
0.906286 0.422665i \(-0.138905\pi\)
\(710\) −29.6874 26.2808i −1.11415 0.986301i
\(711\) 48.4536i 1.81715i
\(712\) 2.02286 2.84595i 0.0758097 0.106656i
\(713\) −9.40234 + 9.40234i −0.352120 + 0.352120i
\(714\) −4.73868 + 0.264806i −0.177341 + 0.00991012i
\(715\) 5.90985 + 5.85141i 0.221016 + 0.218830i
\(716\) −3.08751 27.5391i −0.115386 1.02919i
\(717\) −1.96730 1.96730i −0.0734701 0.0734701i
\(718\) 34.8704 38.9983i 1.30135 1.45540i
\(719\) −30.0831 −1.12191 −0.560955 0.827847i \(-0.689566\pi\)
−0.560955 + 0.827847i \(0.689566\pi\)
\(720\) −5.97059 25.7007i −0.222511 0.957807i
\(721\) 36.2551 1.35021
\(722\) 3.19289 3.57086i 0.118827 0.132894i
\(723\) 2.65661 + 2.65661i 0.0988002 + 0.0988002i
\(724\) −1.91684 17.0973i −0.0712388 0.635416i
\(725\) 0.129689 + 13.0501i 0.00481653 + 0.484670i
\(726\) 0.895034 0.0500161i 0.0332178 0.00185627i
\(727\) 25.6595 25.6595i 0.951656 0.951656i −0.0472278 0.998884i \(-0.515039\pi\)
0.998884 + 0.0472278i \(0.0150387\pi\)
\(728\) −5.11380 + 7.19459i −0.189530 + 0.266649i
\(729\) 24.3343i 0.901269i
\(730\) −1.68454 27.6755i −0.0623475 1.02432i
\(731\) 0.255548i 0.00945180i
\(732\) −2.50322 + 3.13539i −0.0925217 + 0.115887i
\(733\) −0.867465 + 0.867465i −0.0320406 + 0.0320406i −0.722946 0.690905i \(-0.757212\pi\)
0.690905 + 0.722946i \(0.257212\pi\)
\(734\) −2.18455 39.0923i −0.0806331 1.44292i
\(735\) −0.964182 + 0.973811i −0.0355644 + 0.0359196i
\(736\) −39.6427 + 11.3616i −1.46125 + 0.418795i
\(737\) 27.7998 + 27.7998i 1.02402 + 1.02402i
\(738\) −12.0773 10.7989i −0.444571 0.397514i
\(739\) 2.05358 0.0755423 0.0377712 0.999286i \(-0.487974\pi\)
0.0377712 + 0.999286i \(0.487974\pi\)
\(740\) −27.9983 + 35.4286i −1.02924 + 1.30238i
\(741\) −0.884064 −0.0324769
\(742\) 1.39028 + 1.24312i 0.0510387 + 0.0456363i
\(743\) 10.3809 + 10.3809i 0.380838 + 0.380838i 0.871404 0.490566i \(-0.163210\pi\)
−0.490566 + 0.871404i \(0.663210\pi\)
\(744\) 1.13812 0.192405i 0.0417256 0.00705391i
\(745\) 0.226696 + 45.6243i 0.00830550 + 1.67154i
\(746\) 0.804913 + 14.4038i 0.0294699 + 0.527362i
\(747\) 4.79603 4.79603i 0.175478 0.175478i
\(748\) 27.9401 + 22.3067i 1.02159 + 0.815615i
\(749\) 1.65767i 0.0605699i
\(750\) 3.52879 0.250008i 0.128853 0.00912899i
\(751\) 4.09706i 0.149504i −0.997202 0.0747519i \(-0.976184\pi\)
0.997202 0.0747519i \(-0.0238165\pi\)
\(752\) 19.1180 30.3517i 0.697162 1.10681i
\(753\) 2.03838 2.03838i 0.0742827 0.0742827i
\(754\) −3.68557 + 0.205956i −0.134220 + 0.00750048i
\(755\) −0.0605625 12.1887i −0.00220410 0.443591i
\(756\) 8.25721 0.925746i 0.300312 0.0336691i
\(757\) −21.0913 21.0913i −0.766576 0.766576i 0.210926 0.977502i \(-0.432352\pi\)
−0.977502 + 0.210926i \(0.932352\pi\)
\(758\) −8.10468 + 9.06410i −0.294375 + 0.329223i
\(759\) −6.06642 −0.220197
\(760\) 20.4408 + 14.3766i 0.741465 + 0.521496i
\(761\) −32.9641 −1.19495 −0.597474 0.801888i \(-0.703829\pi\)
−0.597474 + 0.801888i \(0.703829\pi\)
\(762\) −0.584458 + 0.653646i −0.0211727 + 0.0236791i
\(763\) −14.0727 14.0727i −0.509465 0.509465i
\(764\) 0.913820 0.102452i 0.0330608 0.00370657i
\(765\) 22.3065 22.5293i 0.806493 0.814548i
\(766\) −8.04212 + 0.449408i −0.290574 + 0.0162378i
\(767\) −0.773117 + 0.773117i −0.0279156 + 0.0279156i
\(768\) 3.37632 + 1.18980i 0.121833 + 0.0429334i
\(769\) 23.4118i 0.844250i −0.906538 0.422125i \(-0.861284\pi\)
0.906538 0.422125i \(-0.138716\pi\)
\(770\) 36.6367 2.22999i 1.32030 0.0803631i
\(771\) 4.77429i 0.171942i
\(772\) −10.8778 8.68461i