# Properties

 Label 260.2.i.d.61.1 Level $260$ Weight $2$ Character 260.61 Analytic conductor $2.076$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$260 = 2^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 260.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.07611045255$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 61.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 260.61 Dual form 260.2.i.d.81.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.50000 - 2.59808i) q^{3} +1.00000 q^{5} +(-1.50000 - 2.59808i) q^{7} +(-3.00000 - 5.19615i) q^{9} +O(q^{10})$$ $$q+(1.50000 - 2.59808i) q^{3} +1.00000 q^{5} +(-1.50000 - 2.59808i) q^{7} +(-3.00000 - 5.19615i) q^{9} +(-1.50000 + 2.59808i) q^{11} +(1.00000 + 3.46410i) q^{13} +(1.50000 - 2.59808i) q^{15} +(3.50000 + 6.06218i) q^{17} +(-0.500000 - 0.866025i) q^{19} -9.00000 q^{21} +(3.50000 - 6.06218i) q^{23} +1.00000 q^{25} -9.00000 q^{27} +(2.50000 - 4.33013i) q^{29} -4.00000 q^{31} +(4.50000 + 7.79423i) q^{33} +(-1.50000 - 2.59808i) q^{35} +(1.50000 - 2.59808i) q^{37} +(10.5000 + 2.59808i) q^{39} +(-3.50000 + 6.06218i) q^{41} +(4.50000 + 7.79423i) q^{43} +(-3.00000 - 5.19615i) q^{45} +8.00000 q^{47} +(-1.00000 + 1.73205i) q^{49} +21.0000 q^{51} -6.00000 q^{53} +(-1.50000 + 2.59808i) q^{55} -3.00000 q^{57} +(-2.50000 - 4.33013i) q^{59} +(2.50000 + 4.33013i) q^{61} +(-9.00000 + 15.5885i) q^{63} +(1.00000 + 3.46410i) q^{65} +(-6.50000 + 11.2583i) q^{67} +(-10.5000 - 18.1865i) q^{69} +(1.50000 + 2.59808i) q^{71} -14.0000 q^{73} +(1.50000 - 2.59808i) q^{75} +9.00000 q^{77} -8.00000 q^{79} +(-4.50000 + 7.79423i) q^{81} +12.0000 q^{83} +(3.50000 + 6.06218i) q^{85} +(-7.50000 - 12.9904i) q^{87} +(-3.50000 + 6.06218i) q^{89} +(7.50000 - 7.79423i) q^{91} +(-6.00000 + 10.3923i) q^{93} +(-0.500000 - 0.866025i) q^{95} +(5.50000 + 9.52628i) q^{97} +18.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 3 q^{3} + 2 q^{5} - 3 q^{7} - 6 q^{9}+O(q^{10})$$ 2 * q + 3 * q^3 + 2 * q^5 - 3 * q^7 - 6 * q^9 $$2 q + 3 q^{3} + 2 q^{5} - 3 q^{7} - 6 q^{9} - 3 q^{11} + 2 q^{13} + 3 q^{15} + 7 q^{17} - q^{19} - 18 q^{21} + 7 q^{23} + 2 q^{25} - 18 q^{27} + 5 q^{29} - 8 q^{31} + 9 q^{33} - 3 q^{35} + 3 q^{37} + 21 q^{39} - 7 q^{41} + 9 q^{43} - 6 q^{45} + 16 q^{47} - 2 q^{49} + 42 q^{51} - 12 q^{53} - 3 q^{55} - 6 q^{57} - 5 q^{59} + 5 q^{61} - 18 q^{63} + 2 q^{65} - 13 q^{67} - 21 q^{69} + 3 q^{71} - 28 q^{73} + 3 q^{75} + 18 q^{77} - 16 q^{79} - 9 q^{81} + 24 q^{83} + 7 q^{85} - 15 q^{87} - 7 q^{89} + 15 q^{91} - 12 q^{93} - q^{95} + 11 q^{97} + 36 q^{99}+O(q^{100})$$ 2 * q + 3 * q^3 + 2 * q^5 - 3 * q^7 - 6 * q^9 - 3 * q^11 + 2 * q^13 + 3 * q^15 + 7 * q^17 - q^19 - 18 * q^21 + 7 * q^23 + 2 * q^25 - 18 * q^27 + 5 * q^29 - 8 * q^31 + 9 * q^33 - 3 * q^35 + 3 * q^37 + 21 * q^39 - 7 * q^41 + 9 * q^43 - 6 * q^45 + 16 * q^47 - 2 * q^49 + 42 * q^51 - 12 * q^53 - 3 * q^55 - 6 * q^57 - 5 * q^59 + 5 * q^61 - 18 * q^63 + 2 * q^65 - 13 * q^67 - 21 * q^69 + 3 * q^71 - 28 * q^73 + 3 * q^75 + 18 * q^77 - 16 * q^79 - 9 * q^81 + 24 * q^83 + 7 * q^85 - 15 * q^87 - 7 * q^89 + 15 * q^91 - 12 * q^93 - q^95 + 11 * q^97 + 36 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/260\mathbb{Z}\right)^\times$$.

 $$n$$ $$41$$ $$131$$ $$157$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.50000 2.59808i 0.866025 1.50000i 1.00000i $$-0.5\pi$$
0.866025 0.500000i $$-0.166667\pi$$
$$4$$ 0 0
$$5$$ 1.00000 0.447214
$$6$$ 0 0
$$7$$ −1.50000 2.59808i −0.566947 0.981981i −0.996866 0.0791130i $$-0.974791\pi$$
0.429919 0.902867i $$-0.358542\pi$$
$$8$$ 0 0
$$9$$ −3.00000 5.19615i −1.00000 1.73205i
$$10$$ 0 0
$$11$$ −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i $$-0.982718\pi$$
0.546259 + 0.837616i $$0.316051\pi$$
$$12$$ 0 0
$$13$$ 1.00000 + 3.46410i 0.277350 + 0.960769i
$$14$$ 0 0
$$15$$ 1.50000 2.59808i 0.387298 0.670820i
$$16$$ 0 0
$$17$$ 3.50000 + 6.06218i 0.848875 + 1.47029i 0.882213 + 0.470850i $$0.156053\pi$$
−0.0333386 + 0.999444i $$0.510614\pi$$
$$18$$ 0 0
$$19$$ −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i $$-0.203260\pi$$
−0.917663 + 0.397360i $$0.869927\pi$$
$$20$$ 0 0
$$21$$ −9.00000 −1.96396
$$22$$ 0 0
$$23$$ 3.50000 6.06218i 0.729800 1.26405i −0.227167 0.973856i $$-0.572946\pi$$
0.956967 0.290196i $$-0.0937204\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ −9.00000 −1.73205
$$28$$ 0 0
$$29$$ 2.50000 4.33013i 0.464238 0.804084i −0.534928 0.844897i $$-0.679661\pi$$
0.999167 + 0.0408130i $$0.0129948\pi$$
$$30$$ 0 0
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ 0 0
$$33$$ 4.50000 + 7.79423i 0.783349 + 1.35680i
$$34$$ 0 0
$$35$$ −1.50000 2.59808i −0.253546 0.439155i
$$36$$ 0 0
$$37$$ 1.50000 2.59808i 0.246598 0.427121i −0.715981 0.698119i $$-0.754020\pi$$
0.962580 + 0.270998i $$0.0873538\pi$$
$$38$$ 0 0
$$39$$ 10.5000 + 2.59808i 1.68135 + 0.416025i
$$40$$ 0 0
$$41$$ −3.50000 + 6.06218i −0.546608 + 0.946753i 0.451896 + 0.892071i $$0.350748\pi$$
−0.998504 + 0.0546823i $$0.982585\pi$$
$$42$$ 0 0
$$43$$ 4.50000 + 7.79423i 0.686244 + 1.18861i 0.973044 + 0.230618i $$0.0740749\pi$$
−0.286801 + 0.957990i $$0.592592\pi$$
$$44$$ 0 0
$$45$$ −3.00000 5.19615i −0.447214 0.774597i
$$46$$ 0 0
$$47$$ 8.00000 1.16692 0.583460 0.812142i $$-0.301699\pi$$
0.583460 + 0.812142i $$0.301699\pi$$
$$48$$ 0 0
$$49$$ −1.00000 + 1.73205i −0.142857 + 0.247436i
$$50$$ 0 0
$$51$$ 21.0000 2.94059
$$52$$ 0 0
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 0 0
$$55$$ −1.50000 + 2.59808i −0.202260 + 0.350325i
$$56$$ 0 0
$$57$$ −3.00000 −0.397360
$$58$$ 0 0
$$59$$ −2.50000 4.33013i −0.325472 0.563735i 0.656136 0.754643i $$-0.272190\pi$$
−0.981608 + 0.190909i $$0.938857\pi$$
$$60$$ 0 0
$$61$$ 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i $$-0.0629528\pi$$
−0.660415 + 0.750901i $$0.729619\pi$$
$$62$$ 0 0
$$63$$ −9.00000 + 15.5885i −1.13389 + 1.96396i
$$64$$ 0 0
$$65$$ 1.00000 + 3.46410i 0.124035 + 0.429669i
$$66$$ 0 0
$$67$$ −6.50000 + 11.2583i −0.794101 + 1.37542i 0.129307 + 0.991605i $$0.458725\pi$$
−0.923408 + 0.383819i $$0.874609\pi$$
$$68$$ 0 0
$$69$$ −10.5000 18.1865i −1.26405 2.18940i
$$70$$ 0 0
$$71$$ 1.50000 + 2.59808i 0.178017 + 0.308335i 0.941201 0.337846i $$-0.109698\pi$$
−0.763184 + 0.646181i $$0.776365\pi$$
$$72$$ 0 0
$$73$$ −14.0000 −1.63858 −0.819288 0.573382i $$-0.805631\pi$$
−0.819288 + 0.573382i $$0.805631\pi$$
$$74$$ 0 0
$$75$$ 1.50000 2.59808i 0.173205 0.300000i
$$76$$ 0 0
$$77$$ 9.00000 1.02565
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ 0 0
$$83$$ 12.0000 1.31717 0.658586 0.752506i $$-0.271155\pi$$
0.658586 + 0.752506i $$0.271155\pi$$
$$84$$ 0 0
$$85$$ 3.50000 + 6.06218i 0.379628 + 0.657536i
$$86$$ 0 0
$$87$$ −7.50000 12.9904i −0.804084 1.39272i
$$88$$ 0 0
$$89$$ −3.50000 + 6.06218i −0.370999 + 0.642590i −0.989720 0.143022i $$-0.954318\pi$$
0.618720 + 0.785611i $$0.287651\pi$$
$$90$$ 0 0
$$91$$ 7.50000 7.79423i 0.786214 0.817057i
$$92$$ 0 0
$$93$$ −6.00000 + 10.3923i −0.622171 + 1.07763i
$$94$$ 0 0
$$95$$ −0.500000 0.866025i −0.0512989 0.0888523i
$$96$$ 0 0
$$97$$ 5.50000 + 9.52628i 0.558440 + 0.967247i 0.997627 + 0.0688512i $$0.0219334\pi$$
−0.439187 + 0.898396i $$0.644733\pi$$
$$98$$ 0 0
$$99$$ 18.0000 1.80907
$$100$$ 0 0
$$101$$ 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i $$-0.685553\pi$$
0.998240 + 0.0592978i $$0.0188862\pi$$
$$102$$ 0 0
$$103$$ −16.0000 −1.57653 −0.788263 0.615338i $$-0.789020\pi$$
−0.788263 + 0.615338i $$0.789020\pi$$
$$104$$ 0 0
$$105$$ −9.00000 −0.878310
$$106$$ 0 0
$$107$$ 1.50000 2.59808i 0.145010 0.251166i −0.784366 0.620298i $$-0.787012\pi$$
0.929377 + 0.369132i $$0.120345\pi$$
$$108$$ 0 0
$$109$$ −14.0000 −1.34096 −0.670478 0.741929i $$-0.733911\pi$$
−0.670478 + 0.741929i $$0.733911\pi$$
$$110$$ 0 0
$$111$$ −4.50000 7.79423i −0.427121 0.739795i
$$112$$ 0 0
$$113$$ −6.50000 11.2583i −0.611469 1.05909i −0.990993 0.133913i $$-0.957246\pi$$
0.379525 0.925182i $$-0.376088\pi$$
$$114$$ 0 0
$$115$$ 3.50000 6.06218i 0.326377 0.565301i
$$116$$ 0 0
$$117$$ 15.0000 15.5885i 1.38675 1.44115i
$$118$$ 0 0
$$119$$ 10.5000 18.1865i 0.962533 1.66716i
$$120$$ 0 0
$$121$$ 1.00000 + 1.73205i 0.0909091 + 0.157459i
$$122$$ 0 0
$$123$$ 10.5000 + 18.1865i 0.946753 + 1.63982i
$$124$$ 0 0
$$125$$ 1.00000 0.0894427
$$126$$ 0 0
$$127$$ −0.500000 + 0.866025i −0.0443678 + 0.0768473i −0.887357 0.461084i $$-0.847461\pi$$
0.842989 + 0.537931i $$0.180794\pi$$
$$128$$ 0 0
$$129$$ 27.0000 2.37722
$$130$$ 0 0
$$131$$ 4.00000 0.349482 0.174741 0.984614i $$-0.444091\pi$$
0.174741 + 0.984614i $$0.444091\pi$$
$$132$$ 0 0
$$133$$ −1.50000 + 2.59808i −0.130066 + 0.225282i
$$134$$ 0 0
$$135$$ −9.00000 −0.774597
$$136$$ 0 0
$$137$$ 1.50000 + 2.59808i 0.128154 + 0.221969i 0.922961 0.384893i $$-0.125762\pi$$
−0.794808 + 0.606861i $$0.792428\pi$$
$$138$$ 0 0
$$139$$ −6.50000 11.2583i −0.551323 0.954919i −0.998179 0.0603135i $$-0.980790\pi$$
0.446857 0.894606i $$-0.352543\pi$$
$$140$$ 0 0
$$141$$ 12.0000 20.7846i 1.01058 1.75038i
$$142$$ 0 0
$$143$$ −10.5000 2.59808i −0.878054 0.217262i
$$144$$ 0 0
$$145$$ 2.50000 4.33013i 0.207614 0.359597i
$$146$$ 0 0
$$147$$ 3.00000 + 5.19615i 0.247436 + 0.428571i
$$148$$ 0 0
$$149$$ −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i $$-0.205881\pi$$
−0.920904 + 0.389789i $$0.872548\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 0 0
$$153$$ 21.0000 36.3731i 1.69775 2.94059i
$$154$$ 0 0
$$155$$ −4.00000 −0.321288
$$156$$ 0 0
$$157$$ 6.00000 0.478852 0.239426 0.970915i $$-0.423041\pi$$
0.239426 + 0.970915i $$0.423041\pi$$
$$158$$ 0 0
$$159$$ −9.00000 + 15.5885i −0.713746 + 1.23625i
$$160$$ 0 0
$$161$$ −21.0000 −1.65503
$$162$$ 0 0
$$163$$ −5.50000 9.52628i −0.430793 0.746156i 0.566149 0.824303i $$-0.308433\pi$$
−0.996942 + 0.0781474i $$0.975100\pi$$
$$164$$ 0 0
$$165$$ 4.50000 + 7.79423i 0.350325 + 0.606780i
$$166$$ 0 0
$$167$$ −0.500000 + 0.866025i −0.0386912 + 0.0670151i −0.884723 0.466118i $$-0.845652\pi$$
0.846031 + 0.533133i $$0.178986\pi$$
$$168$$ 0 0
$$169$$ −11.0000 + 6.92820i −0.846154 + 0.532939i
$$170$$ 0 0
$$171$$ −3.00000 + 5.19615i −0.229416 + 0.397360i
$$172$$ 0 0
$$173$$ 7.50000 + 12.9904i 0.570214 + 0.987640i 0.996544 + 0.0830722i $$0.0264732\pi$$
−0.426329 + 0.904568i $$0.640193\pi$$
$$174$$ 0 0
$$175$$ −1.50000 2.59808i −0.113389 0.196396i
$$176$$ 0 0
$$177$$ −15.0000 −1.12747
$$178$$ 0 0
$$179$$ −9.50000 + 16.4545i −0.710063 + 1.22987i 0.254770 + 0.967002i $$0.418000\pi$$
−0.964833 + 0.262864i $$0.915333\pi$$
$$180$$ 0 0
$$181$$ −14.0000 −1.04061 −0.520306 0.853980i $$-0.674182\pi$$
−0.520306 + 0.853980i $$0.674182\pi$$
$$182$$ 0 0
$$183$$ 15.0000 1.10883
$$184$$ 0 0
$$185$$ 1.50000 2.59808i 0.110282 0.191014i
$$186$$ 0 0
$$187$$ −21.0000 −1.53567
$$188$$ 0 0
$$189$$ 13.5000 + 23.3827i 0.981981 + 1.70084i
$$190$$ 0 0
$$191$$ 1.50000 + 2.59808i 0.108536 + 0.187990i 0.915177 0.403051i $$-0.132050\pi$$
−0.806641 + 0.591041i $$0.798717\pi$$
$$192$$ 0 0
$$193$$ 7.50000 12.9904i 0.539862 0.935068i −0.459049 0.888411i $$-0.651810\pi$$
0.998911 0.0466572i $$-0.0148568\pi$$
$$194$$ 0 0
$$195$$ 10.5000 + 2.59808i 0.751921 + 0.186052i
$$196$$ 0 0
$$197$$ 11.5000 19.9186i 0.819341 1.41914i −0.0868274 0.996223i $$-0.527673\pi$$
0.906168 0.422917i $$-0.138994\pi$$
$$198$$ 0 0
$$199$$ −4.50000 7.79423i −0.318997 0.552518i 0.661282 0.750137i $$-0.270013\pi$$
−0.980279 + 0.197619i $$0.936679\pi$$
$$200$$ 0 0
$$201$$ 19.5000 + 33.7750i 1.37542 + 2.38230i
$$202$$ 0 0
$$203$$ −15.0000 −1.05279
$$204$$ 0 0
$$205$$ −3.50000 + 6.06218i −0.244451 + 0.423401i
$$206$$ 0 0
$$207$$ −42.0000 −2.91920
$$208$$ 0 0
$$209$$ 3.00000 0.207514
$$210$$ 0 0
$$211$$ 2.50000 4.33013i 0.172107 0.298098i −0.767049 0.641588i $$-0.778276\pi$$
0.939156 + 0.343490i $$0.111609\pi$$
$$212$$ 0 0
$$213$$ 9.00000 0.616670
$$214$$ 0 0
$$215$$ 4.50000 + 7.79423i 0.306897 + 0.531562i
$$216$$ 0 0
$$217$$ 6.00000 + 10.3923i 0.407307 + 0.705476i
$$218$$ 0 0
$$219$$ −21.0000 + 36.3731i −1.41905 + 2.45786i
$$220$$ 0 0
$$221$$ −17.5000 + 18.1865i −1.17718 + 1.22336i
$$222$$ 0 0
$$223$$ 11.5000 19.9186i 0.770097 1.33385i −0.167412 0.985887i $$-0.553541\pi$$
0.937509 0.347960i $$-0.113126\pi$$
$$224$$ 0 0
$$225$$ −3.00000 5.19615i −0.200000 0.346410i
$$226$$ 0 0
$$227$$ 0.500000 + 0.866025i 0.0331862 + 0.0574801i 0.882141 0.470985i $$-0.156101\pi$$
−0.848955 + 0.528465i $$0.822768\pi$$
$$228$$ 0 0
$$229$$ 26.0000 1.71813 0.859064 0.511868i $$-0.171046\pi$$
0.859064 + 0.511868i $$0.171046\pi$$
$$230$$ 0 0
$$231$$ 13.5000 23.3827i 0.888235 1.53847i
$$232$$ 0 0
$$233$$ 18.0000 1.17922 0.589610 0.807688i $$-0.299282\pi$$
0.589610 + 0.807688i $$0.299282\pi$$
$$234$$ 0 0
$$235$$ 8.00000 0.521862
$$236$$ 0 0
$$237$$ −12.0000 + 20.7846i −0.779484 + 1.35011i
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ 0.500000 + 0.866025i 0.0322078 + 0.0557856i 0.881680 0.471848i $$-0.156413\pi$$
−0.849472 + 0.527633i $$0.823079\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ −1.00000 + 1.73205i −0.0638877 + 0.110657i
$$246$$ 0 0
$$247$$ 2.50000 2.59808i 0.159071 0.165312i
$$248$$ 0 0
$$249$$ 18.0000 31.1769i 1.14070 1.97576i
$$250$$ 0 0
$$251$$ −2.50000 4.33013i −0.157799 0.273315i 0.776276 0.630393i $$-0.217106\pi$$
−0.934075 + 0.357078i $$0.883773\pi$$
$$252$$ 0 0
$$253$$ 10.5000 + 18.1865i 0.660129 + 1.14338i
$$254$$ 0 0
$$255$$ 21.0000 1.31507
$$256$$ 0 0
$$257$$ 9.50000 16.4545i 0.592594 1.02640i −0.401288 0.915952i $$-0.631437\pi$$
0.993882 0.110450i $$-0.0352294\pi$$
$$258$$ 0 0
$$259$$ −9.00000 −0.559233
$$260$$ 0 0
$$261$$ −30.0000 −1.85695
$$262$$ 0 0
$$263$$ 3.50000 6.06218i 0.215819 0.373810i −0.737706 0.675122i $$-0.764091\pi$$
0.953526 + 0.301312i $$0.0974245\pi$$
$$264$$ 0 0
$$265$$ −6.00000 −0.368577
$$266$$ 0 0
$$267$$ 10.5000 + 18.1865i 0.642590 + 1.11300i
$$268$$ 0 0
$$269$$ −1.50000 2.59808i −0.0914566 0.158408i 0.816668 0.577108i $$-0.195819\pi$$
−0.908124 + 0.418701i $$0.862486\pi$$
$$270$$ 0 0
$$271$$ −11.5000 + 19.9186i −0.698575 + 1.20997i 0.270385 + 0.962752i $$0.412849\pi$$
−0.968960 + 0.247216i $$0.920484\pi$$
$$272$$ 0 0
$$273$$ −9.00000 31.1769i −0.544705 1.88691i
$$274$$ 0 0
$$275$$ −1.50000 + 2.59808i −0.0904534 + 0.156670i
$$276$$ 0 0
$$277$$ 11.5000 + 19.9186i 0.690968 + 1.19679i 0.971521 + 0.236953i $$0.0761488\pi$$
−0.280553 + 0.959839i $$0.590518\pi$$
$$278$$ 0 0
$$279$$ 12.0000 + 20.7846i 0.718421 + 1.24434i
$$280$$ 0 0
$$281$$ −10.0000 −0.596550 −0.298275 0.954480i $$-0.596411\pi$$
−0.298275 + 0.954480i $$0.596411\pi$$
$$282$$ 0 0
$$283$$ −0.500000 + 0.866025i −0.0297219 + 0.0514799i −0.880504 0.474039i $$-0.842796\pi$$
0.850782 + 0.525519i $$0.176129\pi$$
$$284$$ 0 0
$$285$$ −3.00000 −0.177705
$$286$$ 0 0
$$287$$ 21.0000 1.23959
$$288$$ 0 0
$$289$$ −16.0000 + 27.7128i −0.941176 + 1.63017i
$$290$$ 0 0
$$291$$ 33.0000 1.93449
$$292$$ 0 0
$$293$$ −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i $$-0.251343\pi$$
−0.967009 + 0.254741i $$0.918010\pi$$
$$294$$ 0 0
$$295$$ −2.50000 4.33013i −0.145556 0.252110i
$$296$$ 0 0
$$297$$ 13.5000 23.3827i 0.783349 1.35680i
$$298$$ 0 0
$$299$$ 24.5000 + 6.06218i 1.41687 + 0.350585i
$$300$$ 0 0
$$301$$ 13.5000 23.3827i 0.778127 1.34776i
$$302$$ 0 0
$$303$$ −13.5000 23.3827i −0.775555 1.34330i
$$304$$ 0 0
$$305$$ 2.50000 + 4.33013i 0.143150 + 0.247942i
$$306$$ 0 0
$$307$$ 28.0000 1.59804 0.799022 0.601302i $$-0.205351\pi$$
0.799022 + 0.601302i $$0.205351\pi$$
$$308$$ 0 0
$$309$$ −24.0000 + 41.5692i −1.36531 + 2.36479i
$$310$$ 0 0
$$311$$ −24.0000 −1.36092 −0.680458 0.732787i $$-0.738219\pi$$
−0.680458 + 0.732787i $$0.738219\pi$$
$$312$$ 0 0
$$313$$ −6.00000 −0.339140 −0.169570 0.985518i $$-0.554238\pi$$
−0.169570 + 0.985518i $$0.554238\pi$$
$$314$$ 0 0
$$315$$ −9.00000 + 15.5885i −0.507093 + 0.878310i
$$316$$ 0 0
$$317$$ −2.00000 −0.112331 −0.0561656 0.998421i $$-0.517887\pi$$
−0.0561656 + 0.998421i $$0.517887\pi$$
$$318$$ 0 0
$$319$$ 7.50000 + 12.9904i 0.419919 + 0.727322i
$$320$$ 0 0
$$321$$ −4.50000 7.79423i −0.251166 0.435031i
$$322$$ 0 0
$$323$$ 3.50000 6.06218i 0.194745 0.337309i
$$324$$ 0 0
$$325$$ 1.00000 + 3.46410i 0.0554700 + 0.192154i
$$326$$ 0 0
$$327$$ −21.0000 + 36.3731i −1.16130 + 2.01144i
$$328$$ 0 0
$$329$$ −12.0000 20.7846i −0.661581 1.14589i
$$330$$ 0 0
$$331$$ −6.50000 11.2583i −0.357272 0.618814i 0.630232 0.776407i $$-0.282960\pi$$
−0.987504 + 0.157593i $$0.949627\pi$$
$$332$$ 0 0
$$333$$ −18.0000 −0.986394
$$334$$ 0 0
$$335$$ −6.50000 + 11.2583i −0.355133 + 0.615108i
$$336$$ 0 0
$$337$$ −18.0000 −0.980522 −0.490261 0.871576i $$-0.663099\pi$$
−0.490261 + 0.871576i $$0.663099\pi$$
$$338$$ 0 0
$$339$$ −39.0000 −2.11819
$$340$$ 0 0
$$341$$ 6.00000 10.3923i 0.324918 0.562775i
$$342$$ 0 0
$$343$$ −15.0000 −0.809924
$$344$$ 0 0
$$345$$ −10.5000 18.1865i −0.565301 0.979130i
$$346$$ 0 0
$$347$$ 6.50000 + 11.2583i 0.348938 + 0.604379i 0.986061 0.166383i $$-0.0532089\pi$$
−0.637123 + 0.770762i $$0.719876\pi$$
$$348$$ 0 0
$$349$$ 12.5000 21.6506i 0.669110 1.15893i −0.309044 0.951048i $$-0.600009\pi$$
0.978153 0.207884i $$-0.0666577\pi$$
$$350$$ 0 0
$$351$$ −9.00000 31.1769i −0.480384 1.66410i
$$352$$ 0 0
$$353$$ −10.5000 + 18.1865i −0.558859 + 0.967972i 0.438733 + 0.898617i $$0.355427\pi$$
−0.997592 + 0.0693543i $$0.977906\pi$$
$$354$$ 0 0
$$355$$ 1.50000 + 2.59808i 0.0796117 + 0.137892i
$$356$$ 0 0
$$357$$ −31.5000 54.5596i −1.66716 2.88760i
$$358$$ 0 0
$$359$$ −8.00000 −0.422224 −0.211112 0.977462i $$-0.567708\pi$$
−0.211112 + 0.977462i $$0.567708\pi$$
$$360$$ 0 0
$$361$$ 9.00000 15.5885i 0.473684 0.820445i
$$362$$ 0 0
$$363$$ 6.00000 0.314918
$$364$$ 0 0
$$365$$ −14.0000 −0.732793
$$366$$ 0 0
$$367$$ −4.50000 + 7.79423i −0.234898 + 0.406855i −0.959243 0.282582i $$-0.908809\pi$$
0.724345 + 0.689438i $$0.242142\pi$$
$$368$$ 0 0
$$369$$ 42.0000 2.18643
$$370$$ 0 0
$$371$$ 9.00000 + 15.5885i 0.467257 + 0.809312i
$$372$$ 0 0
$$373$$ 13.5000 + 23.3827i 0.699004 + 1.21071i 0.968812 + 0.247796i $$0.0797062\pi$$
−0.269809 + 0.962914i $$0.586961\pi$$
$$374$$ 0 0
$$375$$ 1.50000 2.59808i 0.0774597 0.134164i
$$376$$ 0 0
$$377$$ 17.5000 + 4.33013i 0.901296 + 0.223013i
$$378$$ 0 0
$$379$$ 4.50000 7.79423i 0.231149 0.400363i −0.726997 0.686640i $$-0.759085\pi$$
0.958147 + 0.286278i $$0.0924180\pi$$
$$380$$ 0 0
$$381$$ 1.50000 + 2.59808i 0.0768473 + 0.133103i
$$382$$ 0 0
$$383$$ 6.50000 + 11.2583i 0.332134 + 0.575274i 0.982930 0.183979i $$-0.0588979\pi$$
−0.650796 + 0.759253i $$0.725565\pi$$
$$384$$ 0 0
$$385$$ 9.00000 0.458682
$$386$$ 0 0
$$387$$ 27.0000 46.7654i 1.37249 2.37722i
$$388$$ 0 0
$$389$$ 18.0000 0.912636 0.456318 0.889817i $$-0.349168\pi$$
0.456318 + 0.889817i $$0.349168\pi$$
$$390$$ 0 0
$$391$$ 49.0000 2.47804
$$392$$ 0 0
$$393$$ 6.00000 10.3923i 0.302660 0.524222i
$$394$$ 0 0
$$395$$ −8.00000 −0.402524
$$396$$ 0 0
$$397$$ −16.5000 28.5788i −0.828111 1.43433i −0.899518 0.436884i $$-0.856082\pi$$
0.0714068 0.997447i $$-0.477251\pi$$
$$398$$ 0 0
$$399$$ 4.50000 + 7.79423i 0.225282 + 0.390199i
$$400$$ 0 0
$$401$$ −7.50000 + 12.9904i −0.374532 + 0.648709i −0.990257 0.139253i $$-0.955530\pi$$
0.615725 + 0.787961i $$0.288863\pi$$
$$402$$ 0 0
$$403$$ −4.00000 13.8564i −0.199254 0.690237i
$$404$$ 0 0
$$405$$ −4.50000 + 7.79423i −0.223607 + 0.387298i
$$406$$ 0 0
$$407$$ 4.50000 + 7.79423i 0.223057 + 0.386346i
$$408$$ 0 0
$$409$$ 0.500000 + 0.866025i 0.0247234 + 0.0428222i 0.878122 0.478436i $$-0.158796\pi$$
−0.853399 + 0.521258i $$0.825463\pi$$
$$410$$ 0 0
$$411$$ 9.00000 0.443937
$$412$$ 0 0
$$413$$ −7.50000 + 12.9904i −0.369051 + 0.639215i
$$414$$ 0 0
$$415$$ 12.0000 0.589057
$$416$$ 0 0
$$417$$ −39.0000 −1.90984
$$418$$ 0 0
$$419$$ 16.5000 28.5788i 0.806078 1.39617i −0.109483 0.993989i $$-0.534920\pi$$
0.915561 0.402179i $$-0.131747\pi$$
$$420$$ 0 0
$$421$$ 34.0000 1.65706 0.828529 0.559946i $$-0.189178\pi$$
0.828529 + 0.559946i $$0.189178\pi$$
$$422$$ 0 0
$$423$$ −24.0000 41.5692i −1.16692 2.02116i
$$424$$ 0 0
$$425$$ 3.50000 + 6.06218i 0.169775 + 0.294059i
$$426$$ 0 0
$$427$$ 7.50000 12.9904i 0.362950 0.628649i
$$428$$ 0 0
$$429$$ −22.5000 + 23.3827i −1.08631 + 1.12893i
$$430$$ 0 0
$$431$$ 4.50000 7.79423i 0.216757 0.375435i −0.737057 0.675830i $$-0.763785\pi$$
0.953815 + 0.300395i $$0.0971186\pi$$
$$432$$ 0 0
$$433$$ −0.500000 0.866025i −0.0240285 0.0416185i 0.853761 0.520665i $$-0.174316\pi$$
−0.877790 + 0.479046i $$0.840983\pi$$
$$434$$ 0 0
$$435$$ −7.50000 12.9904i −0.359597 0.622841i
$$436$$ 0 0
$$437$$ −7.00000 −0.334855
$$438$$ 0 0
$$439$$ −1.50000 + 2.59808i −0.0715911 + 0.123999i −0.899599 0.436717i $$-0.856141\pi$$
0.828008 + 0.560717i $$0.189474\pi$$
$$440$$ 0 0
$$441$$ 12.0000 0.571429
$$442$$ 0 0
$$443$$ 24.0000 1.14027 0.570137 0.821549i $$-0.306890\pi$$
0.570137 + 0.821549i $$0.306890\pi$$
$$444$$ 0 0
$$445$$ −3.50000 + 6.06218i −0.165916 + 0.287375i
$$446$$ 0 0
$$447$$ −9.00000 −0.425685
$$448$$ 0 0
$$449$$ 10.5000 + 18.1865i 0.495526 + 0.858276i 0.999987 0.00515887i $$-0.00164213\pi$$
−0.504461 + 0.863434i $$0.668309\pi$$
$$450$$ 0 0
$$451$$ −10.5000 18.1865i −0.494426 0.856370i
$$452$$ 0 0
$$453$$ −12.0000 + 20.7846i −0.563809 + 0.976546i
$$454$$ 0 0
$$455$$ 7.50000 7.79423i 0.351605 0.365399i
$$456$$ 0 0
$$457$$ 11.5000 19.9186i 0.537947 0.931752i −0.461067 0.887365i $$-0.652533\pi$$
0.999014 0.0443868i $$-0.0141334\pi$$
$$458$$ 0 0
$$459$$ −31.5000 54.5596i −1.47029 2.54662i
$$460$$ 0 0
$$461$$ −5.50000 9.52628i −0.256161 0.443683i 0.709050 0.705159i $$-0.249124\pi$$
−0.965210 + 0.261476i $$0.915791\pi$$
$$462$$ 0 0
$$463$$ −28.0000 −1.30127 −0.650635 0.759390i $$-0.725497\pi$$
−0.650635 + 0.759390i $$0.725497\pi$$
$$464$$ 0 0
$$465$$ −6.00000 + 10.3923i −0.278243 + 0.481932i
$$466$$ 0 0
$$467$$ 20.0000 0.925490 0.462745 0.886492i $$-0.346865\pi$$
0.462745 + 0.886492i $$0.346865\pi$$
$$468$$ 0 0
$$469$$ 39.0000 1.80085
$$470$$ 0 0
$$471$$ 9.00000 15.5885i 0.414698 0.718278i
$$472$$ 0 0
$$473$$ −27.0000 −1.24146
$$474$$ 0 0
$$475$$ −0.500000 0.866025i −0.0229416 0.0397360i
$$476$$ 0 0
$$477$$ 18.0000 + 31.1769i 0.824163 + 1.42749i
$$478$$ 0 0
$$479$$ 0.500000 0.866025i 0.0228456 0.0395697i −0.854377 0.519654i $$-0.826061\pi$$
0.877222 + 0.480085i $$0.159394\pi$$
$$480$$ 0 0
$$481$$ 10.5000 + 2.59808i 0.478759 + 0.118462i
$$482$$ 0 0
$$483$$ −31.5000 + 54.5596i −1.43330 + 2.48255i
$$484$$ 0 0
$$485$$ 5.50000 + 9.52628i 0.249742 + 0.432566i
$$486$$ 0 0
$$487$$ 8.50000 + 14.7224i 0.385172 + 0.667137i 0.991793 0.127854i $$-0.0408089\pi$$
−0.606621 + 0.794991i $$0.707476\pi$$
$$488$$ 0 0
$$489$$ −33.0000 −1.49231
$$490$$ 0 0
$$491$$ −11.5000 + 19.9186i −0.518988 + 0.898913i 0.480769 + 0.876847i $$0.340358\pi$$
−0.999757 + 0.0220657i $$0.992976\pi$$
$$492$$ 0 0
$$493$$ 35.0000 1.57632
$$494$$ 0 0
$$495$$ 18.0000 0.809040
$$496$$ 0 0
$$497$$ 4.50000 7.79423i 0.201853 0.349619i
$$498$$ 0 0
$$499$$ −16.0000 −0.716258 −0.358129 0.933672i $$-0.616585\pi$$
−0.358129 + 0.933672i $$0.616585\pi$$
$$500$$ 0 0
$$501$$ 1.50000 + 2.59808i 0.0670151 + 0.116073i
$$502$$ 0 0
$$503$$ −5.50000 9.52628i −0.245233 0.424756i 0.716964 0.697110i $$-0.245531\pi$$
−0.962197 + 0.272354i $$0.912198\pi$$
$$504$$ 0 0
$$505$$ 4.50000 7.79423i 0.200247 0.346839i
$$506$$ 0 0
$$507$$ 1.50000 + 38.9711i 0.0666173 + 1.73077i
$$508$$ 0 0
$$509$$ −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i $$-0.941202\pi$$
0.650556 + 0.759458i $$0.274536\pi$$
$$510$$ 0 0
$$511$$ 21.0000 + 36.3731i 0.928985 + 1.60905i
$$512$$ 0 0
$$513$$ 4.50000 + 7.79423i 0.198680 + 0.344124i
$$514$$ 0 0
$$515$$ −16.0000 −0.705044
$$516$$ 0 0
$$517$$ −12.0000 + 20.7846i −0.527759 + 0.914106i
$$518$$ 0 0
$$519$$ 45.0000 1.97528
$$520$$ 0 0
$$521$$ −34.0000 −1.48957 −0.744784 0.667306i $$-0.767447\pi$$
−0.744784 + 0.667306i $$0.767447\pi$$
$$522$$ 0 0
$$523$$ 11.5000 19.9186i 0.502860 0.870979i −0.497135 0.867673i $$-0.665615\pi$$
0.999995 0.00330547i $$-0.00105217\pi$$
$$524$$ 0 0
$$525$$ −9.00000 −0.392792
$$526$$ 0 0
$$527$$ −14.0000 24.2487i −0.609850 1.05629i
$$528$$ 0 0
$$529$$ −13.0000 22.5167i −0.565217 0.978985i
$$530$$ 0 0
$$531$$ −15.0000 + 25.9808i −0.650945 + 1.12747i
$$532$$ 0 0
$$533$$ −24.5000 6.06218i −1.06121 0.262582i
$$534$$ 0 0
$$535$$ 1.50000 2.59808i 0.0648507 0.112325i
$$536$$ 0 0
$$537$$ 28.5000 + 49.3634i 1.22987 + 2.13019i
$$538$$ 0 0
$$539$$ −3.00000 5.19615i −0.129219 0.223814i
$$540$$ 0 0
$$541$$ 10.0000 0.429934 0.214967 0.976621i $$-0.431036\pi$$
0.214967 + 0.976621i $$0.431036\pi$$
$$542$$ 0 0
$$543$$ −21.0000 + 36.3731i −0.901196 + 1.56092i
$$544$$ 0 0
$$545$$ −14.0000 −0.599694
$$546$$ 0 0
$$547$$ −16.0000 −0.684111 −0.342055 0.939680i $$-0.611123\pi$$
−0.342055 + 0.939680i $$0.611123\pi$$
$$548$$ 0 0
$$549$$ 15.0000 25.9808i 0.640184 1.10883i
$$550$$ 0 0
$$551$$ −5.00000 −0.213007
$$552$$ 0 0
$$553$$ 12.0000 + 20.7846i 0.510292 + 0.883852i
$$554$$ 0 0
$$555$$ −4.50000 7.79423i −0.191014 0.330847i
$$556$$ 0 0
$$557$$ 9.50000 16.4545i 0.402528 0.697199i −0.591502 0.806303i $$-0.701465\pi$$
0.994030 + 0.109104i $$0.0347983\pi$$
$$558$$ 0 0
$$559$$ −22.5000 + 23.3827i −0.951649 + 0.988982i
$$560$$ 0 0
$$561$$ −31.5000 + 54.5596i −1.32993 + 2.30351i
$$562$$ 0 0
$$563$$ 22.5000 + 38.9711i 0.948262 + 1.64244i 0.749085 + 0.662474i $$0.230494\pi$$
0.199177 + 0.979963i $$0.436173\pi$$
$$564$$ 0 0
$$565$$ −6.50000 11.2583i −0.273457 0.473642i
$$566$$ 0 0
$$567$$ 27.0000 1.13389
$$568$$ 0 0
$$569$$ −9.50000 + 16.4545i −0.398261 + 0.689808i −0.993511 0.113732i $$-0.963719\pi$$
0.595251 + 0.803540i $$0.297053\pi$$
$$570$$ 0 0
$$571$$ −40.0000 −1.67395 −0.836974 0.547243i $$-0.815677\pi$$
−0.836974 + 0.547243i $$0.815677\pi$$
$$572$$ 0 0
$$573$$ 9.00000 0.375980
$$574$$ 0 0
$$575$$ 3.50000 6.06218i 0.145960 0.252810i
$$576$$ 0 0
$$577$$ 2.00000 0.0832611 0.0416305 0.999133i $$-0.486745\pi$$
0.0416305 + 0.999133i $$0.486745\pi$$
$$578$$ 0 0
$$579$$ −22.5000 38.9711i −0.935068 1.61959i
$$580$$ 0 0
$$581$$ −18.0000 31.1769i −0.746766 1.29344i
$$582$$ 0 0
$$583$$ 9.00000 15.5885i 0.372742 0.645608i
$$584$$ 0 0
$$585$$ 15.0000 15.5885i 0.620174 0.644503i
$$586$$ 0 0
$$587$$ −18.5000 + 32.0429i −0.763577 + 1.32255i 0.177419 + 0.984135i $$0.443225\pi$$
−0.940996 + 0.338418i $$0.890108\pi$$
$$588$$ 0 0
$$589$$ 2.00000 + 3.46410i 0.0824086 + 0.142736i
$$590$$ 0 0
$$591$$ −34.5000 59.7558i −1.41914 2.45802i
$$592$$ 0 0
$$593$$ 26.0000 1.06769 0.533846 0.845582i $$-0.320746\pi$$
0.533846 + 0.845582i $$0.320746\pi$$
$$594$$ 0 0
$$595$$ 10.5000 18.1865i 0.430458 0.745575i
$$596$$ 0 0
$$597$$ −27.0000 −1.10504
$$598$$ 0 0
$$599$$ 8.00000 0.326871 0.163436 0.986554i $$-0.447742\pi$$
0.163436 + 0.986554i $$0.447742\pi$$
$$600$$ 0 0
$$601$$ 6.50000 11.2583i 0.265141 0.459237i −0.702460 0.711723i $$-0.747915\pi$$
0.967600 + 0.252486i $$0.0812483\pi$$
$$602$$ 0 0
$$603$$ 78.0000 3.17641
$$604$$ 0 0
$$605$$ 1.00000 + 1.73205i 0.0406558 + 0.0704179i
$$606$$ 0 0
$$607$$ 4.50000 + 7.79423i 0.182649 + 0.316358i 0.942782 0.333410i $$-0.108199\pi$$
−0.760133 + 0.649768i $$0.774866\pi$$
$$608$$ 0 0
$$609$$ −22.5000 + 38.9711i −0.911746 + 1.57919i
$$610$$ 0 0
$$611$$ 8.00000 + 27.7128i 0.323645 + 1.12114i
$$612$$ 0 0
$$613$$ 15.5000 26.8468i 0.626039 1.08433i −0.362300 0.932062i $$-0.618008\pi$$
0.988339 0.152270i $$-0.0486583\pi$$
$$614$$ 0 0
$$615$$ 10.5000 + 18.1865i 0.423401 + 0.733352i
$$616$$ 0 0
$$617$$ −14.5000 25.1147i −0.583748 1.01108i −0.995030 0.0995732i $$-0.968252\pi$$
0.411282 0.911508i $$-0.365081\pi$$
$$618$$ 0 0
$$619$$ 12.0000 0.482321 0.241160 0.970485i $$-0.422472\pi$$
0.241160 + 0.970485i $$0.422472\pi$$
$$620$$ 0 0
$$621$$ −31.5000 + 54.5596i −1.26405 + 2.18940i
$$622$$ 0 0
$$623$$ 21.0000 0.841347
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 4.50000 7.79423i 0.179713 0.311272i
$$628$$ 0 0
$$629$$ 21.0000 0.837325
$$630$$ 0 0
$$631$$ 7.50000 + 12.9904i 0.298570 + 0.517139i 0.975809 0.218624i $$-0.0701569\pi$$
−0.677239 + 0.735763i $$0.736824\pi$$
$$632$$ 0 0
$$633$$ −7.50000 12.9904i −0.298098 0.516321i
$$634$$ 0 0
$$635$$ −0.500000 + 0.866025i −0.0198419 + 0.0343672i
$$636$$ 0 0
$$637$$ −7.00000 1.73205i −0.277350 0.0686264i
$$638$$ 0 0
$$639$$ 9.00000 15.5885i 0.356034 0.616670i
$$640$$ 0 0
$$641$$ 10.5000 + 18.1865i 0.414725 + 0.718325i 0.995400 0.0958109i $$-0.0305444\pi$$
−0.580674 + 0.814136i $$0.697211\pi$$
$$642$$ 0 0
$$643$$ −3.50000 6.06218i −0.138027 0.239069i 0.788723 0.614749i $$-0.210743\pi$$
−0.926750 + 0.375680i $$0.877409\pi$$
$$644$$ 0 0
$$645$$ 27.0000 1.06312
$$646$$ 0 0
$$647$$ −8.50000 + 14.7224i −0.334169 + 0.578799i −0.983325 0.181857i $$-0.941789\pi$$
0.649155 + 0.760656i $$0.275122\pi$$
$$648$$ 0 0
$$649$$ 15.0000 0.588802
$$650$$ 0 0
$$651$$ 36.0000 1.41095
$$652$$ 0 0
$$653$$ 5.50000 9.52628i 0.215232 0.372792i −0.738113 0.674678i $$-0.764283\pi$$
0.953344 + 0.301885i $$0.0976160\pi$$
$$654$$ 0 0
$$655$$ 4.00000 0.156293
$$656$$ 0 0
$$657$$ 42.0000 + 72.7461i 1.63858 + 2.83810i
$$658$$ 0 0
$$659$$ 7.50000 + 12.9904i 0.292159 + 0.506033i 0.974320 0.225168i $$-0.0722932\pi$$
−0.682161 + 0.731202i $$0.738960\pi$$
$$660$$ 0 0
$$661$$ 8.50000 14.7224i 0.330612 0.572636i −0.652020 0.758202i $$-0.726078\pi$$
0.982632 + 0.185565i $$0.0594116\pi$$
$$662$$ 0 0
$$663$$ 21.0000 + 72.7461i 0.815572 + 2.82523i
$$664$$ 0 0
$$665$$ −1.50000 + 2.59808i −0.0581675 + 0.100749i
$$666$$ 0 0
$$667$$ −17.5000 30.3109i −0.677603 1.17364i
$$668$$ 0 0
$$669$$ −34.5000 59.7558i −1.33385 2.31029i
$$670$$ 0 0
$$671$$ −15.0000 −0.579069
$$672$$ 0 0
$$673$$ −6.50000 + 11.2583i −0.250557 + 0.433977i −0.963679 0.267063i $$-0.913947\pi$$
0.713123 + 0.701039i $$0.247280\pi$$
$$674$$ 0 0
$$675$$ −9.00000 −0.346410
$$676$$ 0 0
$$677$$ 22.0000 0.845529 0.422764 0.906240i $$-0.361060\pi$$
0.422764 + 0.906240i $$0.361060\pi$$
$$678$$ 0 0
$$679$$ 16.5000 28.5788i 0.633212 1.09676i
$$680$$ 0 0
$$681$$ 3.00000 0.114960
$$682$$ 0 0
$$683$$ −15.5000 26.8468i −0.593091 1.02726i −0.993813 0.111064i $$-0.964574\pi$$
0.400722 0.916200i $$-0.368759\pi$$
$$684$$ 0 0
$$685$$ 1.50000 + 2.59808i 0.0573121 + 0.0992674i
$$686$$ 0 0
$$687$$ 39.0000 67.5500i 1.48794 2.57719i
$$688$$ 0 0
$$689$$ −6.00000 20.7846i −0.228582 0.791831i
$$690$$ 0 0
$$691$$ 12.5000 21.6506i 0.475522 0.823629i −0.524084 0.851666i $$-0.675592\pi$$
0.999607 + 0.0280373i $$0.00892572\pi$$
$$692$$ 0 0
$$693$$ −27.0000 46.7654i −1.02565 1.77647i
$$694$$ 0 0
$$695$$ −6.50000 11.2583i −0.246559 0.427053i
$$696$$ 0 0
$$697$$ −49.0000 −1.85601
$$698$$ 0 0
$$699$$ 27.0000 46.7654i 1.02123 1.76883i
$$700$$ 0 0
$$701$$ 2.00000 0.0755390 0.0377695 0.999286i $$-0.487975\pi$$
0.0377695 + 0.999286i $$0.487975\pi$$
$$702$$ 0 0
$$703$$ −3.00000 −0.113147
$$704$$ 0 0
$$705$$ 12.0000 20.7846i 0.451946 0.782794i
$$706$$ 0 0
$$707$$ −27.0000 −1.01544
$$708$$ 0 0
$$709$$ −17.5000 30.3109i −0.657226 1.13835i −0.981331 0.192328i $$-0.938396\pi$$
0.324104 0.946021i $$-0.394937\pi$$
$$710$$ 0 0
$$711$$ 24.0000 + 41.5692i 0.900070 + 1.55897i
$$712$$ 0 0
$$713$$ −14.0000 + 24.2487i −0.524304 + 0.908121i
$$714$$ 0 0
$$715$$ −10.5000 2.59808i −0.392678 0.0971625i
$$716$$ 0 0
$$717$$ −24.0000 + 41.5692i −0.896296 + 1.55243i
$$718$$ 0 0
$$719$$ −0.500000 0.866025i −0.0186469 0.0322973i 0.856551 0.516062i $$-0.172602\pi$$
−0.875198 + 0.483764i $$0.839269\pi$$
$$720$$ 0 0
$$721$$ 24.0000 + 41.5692i 0.893807 + 1.54812i
$$722$$ 0 0
$$723$$ 3.00000 0.111571
$$724$$ 0 0
$$725$$ 2.50000 4.33013i 0.0928477 0.160817i
$$726$$ 0 0
$$727$$ −28.0000 −1.03846 −0.519231 0.854634i $$-0.673782\pi$$
−0.519231 + 0.854634i $$0.673782\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ −31.5000 + 54.5596i −1.16507 + 2.01796i
$$732$$ 0 0
$$733$$ 14.0000 0.517102 0.258551 0.965998i $$-0.416755\pi$$
0.258551 + 0.965998i $$0.416755\pi$$
$$734$$ 0 0
$$735$$ 3.00000 + 5.19615i 0.110657 + 0.191663i
$$736$$ 0 0
$$737$$ −19.5000 33.7750i −0.718292 1.24412i
$$738$$ 0 0
$$739$$ −19.5000 + 33.7750i −0.717319 + 1.24243i 0.244739 + 0.969589i $$0.421298\pi$$
−0.962058 + 0.272844i $$0.912036\pi$$
$$740$$ 0 0
$$741$$ −3.00000 10.3923i −0.110208 0.381771i
$$742$$ 0 0
$$743$$ −0.500000 + 0.866025i −0.0183432 + 0.0317714i −0.875051 0.484030i $$-0.839172\pi$$
0.856708 + 0.515802i $$0.172506\pi$$
$$744$$ 0 0
$$745$$ −1.50000 2.59808i −0.0549557 0.0951861i
$$746$$ 0 0
$$747$$ −36.0000 62.3538i −1.31717 2.28141i
$$748$$ 0 0
$$749$$ −9.00000 −0.328853
$$750$$ 0 0
$$751$$ 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i $$-0.757107\pi$$
0.959906 + 0.280321i $$0.0904408\pi$$
$$752$$ 0 0
$$753$$ −15.0000 −0.546630
$$754$$ 0 0
$$755$$ −8.00000 −0.291150
$$756$$ 0 0
$$757$$ −0.500000 + 0.866025i −0.0181728 + 0.0314762i −0.874969 0.484179i $$-0.839118\pi$$
0.856796 + 0.515656i $$0.172452\pi$$
$$758$$ 0 0
$$759$$ 63.0000 2.28676
$$760$$ 0 0
$$761$$ −25.5000 44.1673i −0.924374 1.60106i −0.792564 0.609788i $$-0.791255\pi$$
−0.131810 0.991275i $$-0.542079\pi$$
$$762$$ 0 0
$$763$$ 21.0000 + 36.3731i 0.760251 + 1.31679i
$$764$$ 0 0
$$765$$ 21.0000 36.3731i 0.759257 1.31507i
$$766$$ 0 0
$$767$$ 12.5000 12.9904i 0.451349 0.469055i
$$768$$ 0 0
$$769$$ 2.50000 4.33013i 0.0901523 0.156148i −0.817423 0.576038i $$-0.804598\pi$$
0.907575 + 0.419890i $$0.137931\pi$$
$$770$$ 0 0
$$771$$ −28.5000 49.3634i −1.02640 1.77778i
$$772$$ 0 0
$$773$$ −12.5000 21.6506i −0.449594 0.778719i 0.548766 0.835976i $$-0.315098\pi$$
−0.998359 + 0.0572570i $$0.981765\pi$$
$$774$$ 0 0
$$775$$ −4.00000 −0.143684
$$776$$ 0 0
$$777$$ −13.5000 + 23.3827i −0.484310 + 0.838849i
$$778$$ 0 0
$$779$$ 7.00000 0.250801
$$780$$ 0 0
$$781$$ −9.00000 −0.322045
$$782$$ 0 0
$$783$$ −22.5000 + 38.9711i −0.804084 + 1.39272i
$$784$$ 0 0
$$785$$ 6.00000 0.214149
$$786$$ 0 0
$$787$$ 0.500000 + 0.866025i 0.0178231 + 0.0308705i 0.874799 0.484485i $$-0.160993\pi$$
−0.856976 + 0.515356i $$0.827660\pi$$
$$788$$ 0 0
$$789$$ −10.5000 18.1865i −0.373810 0.647458i
$$790$$ 0 0
$$791$$ −19.5000 + 33.7750i −0.693340 + 1.20090i
$$792$$ 0 0
$$793$$ −12.5000 + 12.9904i −0.443888 + 0.461302i
$$794$$ 0 0
$$795$$ −9.00000 + 15.5885i