Properties

Label 260.2.d
Level $260$
Weight $2$
Character orbit 260.d
Rep. character $\chi_{260}(129,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $84$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(260, [\chi])\).

Total New Old
Modular forms 48 8 40
Cusp forms 36 8 28
Eisenstein series 12 0 12

Trace form

\( 8 q - 16 q^{9} + O(q^{10}) \) \( 8 q - 16 q^{9} + 8 q^{25} - 24 q^{29} + 24 q^{35} + 24 q^{39} + 24 q^{49} - 32 q^{51} - 8 q^{55} - 8 q^{61} - 8 q^{69} - 48 q^{75} + 16 q^{79} + 80 q^{81} - 56 q^{91} + 24 q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(260, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
260.2.d.a 260.d 65.d $8$ $2.076$ 8.0.\(\cdots\).3 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}-\beta _{3}q^{5}+(\beta _{4}-\beta _{7})q^{7}+(-2+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(260, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(260, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)