Properties

Label 260.2.bn
Level $260$
Weight $2$
Character orbit 260.bn
Rep. character $\chi_{260}(11,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $112$
Newform subspaces $1$
Sturm bound $84$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.bn (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(260, [\chi])\).

Total New Old
Modular forms 184 112 72
Cusp forms 152 112 40
Eisenstein series 32 0 32

Trace form

\( 112 q + 12 q^{6} - 12 q^{8} + 56 q^{9} - 16 q^{14} - 24 q^{18} - 16 q^{20} + 16 q^{21} - 8 q^{24} - 44 q^{26} - 16 q^{28} - 48 q^{30} - 40 q^{32} - 20 q^{34} - 36 q^{36} - 16 q^{37} - 8 q^{41} + 64 q^{42}+ \cdots + 92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(260, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
260.2.bn.a 260.bn 52.l $112$ $2.076$ None 260.2.bn.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(260, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(260, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)