Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(260, [\chi])\):
\( T_{3}^{144} - 478 T_{3}^{140} + 129567 T_{3}^{136} - 23966422 T_{3}^{132} + 3345451151 T_{3}^{128} - 367242535236 T_{3}^{124} + 32658104919274 T_{3}^{120} + \cdots + 13\!\cdots\!56 \)
T3^144 - 478*T3^140 + 129567*T3^136 - 23966422*T3^132 + 3345451151*T3^128 - 367242535236*T3^124 + 32658104919274*T3^120 - 2388026427116988*T3^116 + 145206272532439885*T3^112 - 7375875949896315322*T3^108 + 313978792022979359345*T3^104 - 11190225651621918888442*T3^100 + 333708641158558611928853*T3^96 - 8301024328371789692396844*T3^92 + 172165315930833608495972314*T3^88 - 2968914069442635923540438964*T3^84 + 42528085241497168807284456663*T3^80 - 503670314152407003504899596022*T3^76 + 4914061375634132148853976865135*T3^72 - 39138596454348125641567150011070*T3^68 + 252581663937352413597838019704249*T3^64 - 1298911370262562886475198759332320*T3^60 + 5253672509237834207000491907279112*T3^56 - 16192723490404967697298762280851184*T3^52 + 37452569634625873385269447113050608*T3^48 - 61492106883549313376325116678388384*T3^44 + 75781516365696536552294706910636896*T3^40 - 69064262726792607355321259624032768*T3^36 + 47953356752807460390247631537021056*T3^32 - 24374521354616630898007656576677632*T3^28 + 9121772343527504207361777923108864*T3^24 - 2204452304049162811713267303264256*T3^20 + 323663409818490753478353119109376*T3^16 - 333617262610071662339692070912*T3^12 + 276016265732641584272125952*T3^8 - 69112212375712500842496*T3^4 + 13911327357083385856
\( T_{17}^{72} - 80 T_{17}^{69} - 3662 T_{17}^{68} + 472 T_{17}^{67} + 3200 T_{17}^{66} + 297116 T_{17}^{65} + 8540021 T_{17}^{64} - 2948256 T_{17}^{63} - 11939488 T_{17}^{62} - 728819188 T_{17}^{61} + \cdots + 14\!\cdots\!00 \)
T17^72 - 80*T17^69 - 3662*T17^68 + 472*T17^67 + 3200*T17^66 + 297116*T17^65 + 8540021*T17^64 - 2948256*T17^63 - 11939488*T17^62 - 728819188*T17^61 - 11854522578*T17^60 + 7302560072*T17^59 + 30002444680*T17^58 + 1003816242780*T17^57 + 11770283454874*T17^56 - 9977520793152*T17^55 - 39289323292448*T17^54 - 980236849305664*T17^53 - 7534599635881622*T17^52 + 8329389260923264*T17^51 + 36717466133923376*T17^50 + 549253535340872748*T17^49 + 3486674698327450189*T17^48 - 3242476664891909360*T17^47 - 16475882701560397120*T17^46 - 208027232864402071756*T17^45 - 1188509862456217162022*T17^44 + 688837764902468951880*T17^43 + 5211391873186110567896*T17^42 + 50839649178111499716020*T17^41 + 297615074165915037496458*T17^40 + 64780325675061578876448*T17^39 - 681713714511798692151616*T17^38 - 7497015323710181772376848*T17^37 - 48846725867227123896091130*T17^36 - 40145987076591649508785152*T17^35 + 44512501872841522157881200*T17^34 + 581028083977348785137619140*T17^33 + 5296370795981732210937835637*T17^32 + 10212182358059630897372257968*T17^31 + 12640157942255021081776576928*T17^30 + 15784233961134826885274588876*T17^29 - 197265547429845594295929642766*T17^28 - 541234060960403059339652985592*T17^27 - 734686579201993438565005375672*T17^26 - 1683547906729352254560171996396*T17^25 + 5060200356648724659774332259201*T17^24 + 22730747112692701391782138122496*T17^23 + 38878330039603340868011879313152*T17^22 + 114254481484069047205216024659944*T17^21 + 119023193098016299076577926444336*T17^20 - 127789571032054531662083209280792*T17^19 - 164992097224797785487167617716640*T17^18 - 772948574891504516911312215804048*T17^17 - 1344952947324349230206562227964288*T17^16 + 820666866492755707371925831894992*T17^15 + 1762411486617809943595620638258080*T17^14 + 4825331465423323380188377923979920*T17^13 + 4377091932135283491759941541130408*T17^12 - 7653803359039182918536016347181888*T17^11 - 3059385023641954279069289372050304*T17^10 - 8506790310135690286754206506042784*T17^9 + 4987284291339938772877847774043760*T17^8 + 5994874947873477741882068355184544*T17^7 + 2151928674140674032814522070621312*T17^6 + 912718378670205760149914890793856*T17^5 + 344049273966941445170195852160864*T17^4 + 64211902849921680858877614596800*T17^3 + 9498544678357549604515278080000*T17^2 + 1666374282446381929949396000000*T17 + 146169931459376363311506250000