Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(260, [\chi])\):
\( T_{3}^{144} - 478 T_{3}^{140} + 131231 T_{3}^{136} - 24290390 T_{3}^{132} + 3362718895 T_{3}^{128} - 360758553092 T_{3}^{124} + 30930126607498 T_{3}^{120} + \cdots + 43\!\cdots\!96 \)
T3^144 - 478*T3^140 + 131231*T3^136 - 24290390*T3^132 + 3362718895*T3^128 - 360758553092*T3^124 + 30930126607498*T3^120 - 2148591424851964*T3^116 + 122660326634845709*T3^112 - 5800313077844589562*T3^108 + 229109634498088950897*T3^104 - 7596302234620343068794*T3^100 + 212384166066291425332149*T3^96 - 5016021757495165571281708*T3^92 + 100185699945283227862273850*T3^88 - 1689767747691181029711472564*T3^84 + 24022972703665976984568420311*T3^80 - 286643430293751552383697758134*T3^76 + 2859335911296101792070943235503*T3^72 - 23685097338747637678450969031422*T3^68 + 162031089979483627719423878281241*T3^64 - 907191667443920647920580789308192*T3^60 + 4134550706347385021223573900296936*T3^56 - 15149967382814563829297815880416240*T3^52 + 44268535769379925859740314351502960*T3^48 - 100737300441391671072616216744036128*T3^44 + 175213174404867233273402808388386144*T3^40 - 219368144306860451623971437959223808*T3^36 + 189610966201625033634197220295668352*T3^32 - 90294141650787440006079957006642944*T3^28 + 30221491395672331906138950362662912*T3^24 - 5685348080440477475623852023080960*T3^20 + 740642714932888643713684290797824*T3^16 - 35385964521257517729782714025984*T3^12 + 1240184689693823082338713939968*T3^8 - 7902730308709362646821666816*T3^4 + 43096964632701710851178496
\( T_{17}^{72} + 12 T_{17}^{71} + 72 T_{17}^{70} + 520 T_{17}^{69} + 474 T_{17}^{68} - 21916 T_{17}^{67} - 161920 T_{17}^{66} - 1233888 T_{17}^{65} - 3127227 T_{17}^{64} + 28630684 T_{17}^{63} + 244012400 T_{17}^{62} + \cdots + 27\!\cdots\!00 \)
T17^72 + 12*T17^71 + 72*T17^70 + 520*T17^69 + 474*T17^68 - 21916*T17^67 - 161920*T17^66 - 1233888*T17^65 - 3127227*T17^64 + 28630684*T17^63 + 244012400*T17^62 + 1914607704*T17^61 + 7447475830*T17^60 - 13941817248*T17^59 - 196176806368*T17^58 - 1652759838560*T17^57 - 7348544270550*T17^56 + 2175062145060*T17^55 + 110721504683896*T17^54 + 1006669860225920*T17^53 + 5048102689774378*T17^52 + 4335486108852972*T17^51 - 35743935610912896*T17^50 - 396977993855988560*T17^49 - 2211556878925592771*T17^48 - 3199448567155085180*T17^47 + 7090352622094736688*T17^46 + 112877764890580122216*T17^45 + 708832523122505816482*T17^44 + 1386646833813475798992*T17^43 - 10065374555313870976*T17^42 - 20585070243418127074608*T17^41 - 154174325186289792625638*T17^40 - 354111495042736941004228*T17^39 - 279427543564348115251032*T17^38 + 2635608569219556552890080*T17^37 + 24851256229107182743294918*T17^36 + 64483796077804425516882564*T17^35 + 82489347080058284732294976*T17^34 - 183405244011421568906116128*T17^33 - 2793202813649030151828166043*T17^32 - 7948155195604835951049413628*T17^31 - 11848969276941350286041076000*T17^30 + 5581157943786310147784258424*T17^29 + 236064283462326815705362029306*T17^28 + 718864050133035767870909632728*T17^27 + 1166033692635622758676230537312*T17^26 + 572440459677325302999460558320*T17^25 - 14033342434347953341112582624655*T17^24 - 45890382873926387079811940184936*T17^23 - 76550787016931998566623113263072*T17^22 - 72996493148290866974990733521208*T17^21 + 603853163030102791202649435604104*T17^20 + 2112892665570980136034967068154064*T17^19 + 3625180898152476070263056783690016*T17^18 + 5173641708559915013571222793117872*T17^17 - 14649274786602426806134633113251712*T17^16 - 63513171798819236947623106693026864*T17^15 - 113588248398857214989560580109149568*T17^14 - 202003709290754895731935661034772224*T17^13 + 167870653324326657588405893577203304*T17^12 + 1265043097265600556255129010914529440*T17^11 + 2397424541929295814881427767519203200*T17^10 + 5283303862867270394945199622594596000*T17^9 + 3978353155946749521273512441962290000*T17^8 - 7522884152151822674080945537669200000*T17^7 - 15828706542393340307506277467182000000*T17^6 - 38364822700375518859268507630535000000*T17^5 - 38198167230651441813684379223212500000*T17^4 + 39002039645050788447931242519375000000*T17^3 + 91787788023314523852212704080000000000*T17^2 + 225551053650402080474096711025000000000*T17 + 277124435060383572862529405003906250000