Properties

Label 260.2.bf.b
Level $260$
Weight $2$
Character orbit 260.bf
Analytic conductor $2.076$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [260,2,Mod(37,260)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(260, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 3, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("260.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12} + 1) q^{3} + (2 \zeta_{12}^{3} - 1) q^{5} + (4 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{7} + (\zeta_{12}^{2} + \zeta_{12} + 1) q^{9} + (2 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 3) q^{11}+ \cdots + (7 \zeta_{12}^{3} + 4 \zeta_{12}^{2} + \cdots - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{5} + 2 q^{7} + 6 q^{9} - 8 q^{11} + 12 q^{13} + 8 q^{19} + 14 q^{21} - 4 q^{23} - 12 q^{25} - 2 q^{27} + 6 q^{29} - 6 q^{33} - 26 q^{35} - 10 q^{37} + 8 q^{39} + 20 q^{41} + 4 q^{43}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(\zeta_{12}\) \(1\) \(-\zeta_{12}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 1.86603 + 0.500000i 0 −1.00000 2.00000i 0 2.23205 3.86603i 0 0.633975 + 0.366025i 0
93.1 0 0.133975 0.500000i 0 −1.00000 + 2.00000i 0 −1.23205 + 2.13397i 0 2.36603 + 1.36603i 0
137.1 0 0.133975 + 0.500000i 0 −1.00000 2.00000i 0 −1.23205 2.13397i 0 2.36603 1.36603i 0
253.1 0 1.86603 0.500000i 0 −1.00000 + 2.00000i 0 2.23205 + 3.86603i 0 0.633975 0.366025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.t even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 260.2.bf.b 4
5.b even 2 1 1300.2.bn.a 4
5.c odd 4 1 260.2.bk.a yes 4
5.c odd 4 1 1300.2.bs.b 4
13.f odd 12 1 260.2.bk.a yes 4
65.o even 12 1 1300.2.bn.a 4
65.s odd 12 1 1300.2.bs.b 4
65.t even 12 1 inner 260.2.bf.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.2.bf.b 4 1.a even 1 1 trivial
260.2.bf.b 4 65.t even 12 1 inner
260.2.bk.a yes 4 5.c odd 4 1
260.2.bk.a yes 4 13.f odd 12 1
1300.2.bn.a 4 5.b even 2 1
1300.2.bn.a 4 65.o even 12 1
1300.2.bs.b 4 5.c odd 4 1
1300.2.bs.b 4 65.s odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} + 5T_{3}^{2} - 2T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(260, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} + 2 T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$11$ \( T^{4} + 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 2916 \) Copy content Toggle raw display
$37$ \( T^{4} + 10 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$41$ \( T^{4} - 20 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$47$ \( (T^{2} + 8 T - 32)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 4 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$59$ \( T^{4} - 8 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$61$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 6 T^{3} + \cdots + 37249 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$73$ \( T^{4} + 224T^{2} + 256 \) Copy content Toggle raw display
$79$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$83$ \( (T^{2} + 8 T - 32)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 28 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$97$ \( T^{4} + 6 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
show more
show less