Properties

Label 26.6.a.c.1.2
Level $26$
Weight $6$
Character 26.1
Self dual yes
Analytic conductor $4.170$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,6,Mod(1,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.16997931514\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{849}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 212 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-14.0688\) of defining polynomial
Character \(\chi\) \(=\) 26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +19.0688 q^{3} +16.0000 q^{4} -7.20641 q^{5} +76.2752 q^{6} -53.6192 q^{7} +64.0000 q^{8} +120.619 q^{9} -28.8256 q^{10} +239.651 q^{11} +305.101 q^{12} -169.000 q^{13} -214.477 q^{14} -137.418 q^{15} +256.000 q^{16} -1973.88 q^{17} +482.477 q^{18} -373.872 q^{19} -115.303 q^{20} -1022.45 q^{21} +958.605 q^{22} +51.4306 q^{23} +1220.40 q^{24} -3073.07 q^{25} -676.000 q^{26} -2333.65 q^{27} -857.908 q^{28} +4796.16 q^{29} -549.670 q^{30} +6906.01 q^{31} +1024.00 q^{32} +4569.86 q^{33} -7895.50 q^{34} +386.402 q^{35} +1929.91 q^{36} +11481.2 q^{37} -1495.49 q^{38} -3222.63 q^{39} -461.210 q^{40} +12547.8 q^{41} -4089.82 q^{42} +1156.07 q^{43} +3834.42 q^{44} -869.231 q^{45} +205.723 q^{46} -18644.9 q^{47} +4881.61 q^{48} -13932.0 q^{49} -12292.3 q^{50} -37639.4 q^{51} -2704.00 q^{52} +9318.90 q^{53} -9334.62 q^{54} -1727.02 q^{55} -3431.63 q^{56} -7129.29 q^{57} +19184.7 q^{58} -5066.63 q^{59} -2198.68 q^{60} +54271.7 q^{61} +27624.0 q^{62} -6467.51 q^{63} +4096.00 q^{64} +1217.88 q^{65} +18279.4 q^{66} +40241.0 q^{67} -31582.0 q^{68} +980.721 q^{69} +1545.61 q^{70} -65236.5 q^{71} +7719.63 q^{72} +68506.2 q^{73} +45924.7 q^{74} -58599.7 q^{75} -5981.95 q^{76} -12849.9 q^{77} -12890.5 q^{78} +10627.3 q^{79} -1844.84 q^{80} -73810.5 q^{81} +50191.1 q^{82} -2357.98 q^{83} -16359.3 q^{84} +14224.5 q^{85} +4624.27 q^{86} +91457.1 q^{87} +15337.7 q^{88} -93620.0 q^{89} -3476.92 q^{90} +9061.65 q^{91} +822.890 q^{92} +131689. q^{93} -74579.5 q^{94} +2694.27 q^{95} +19526.5 q^{96} -31195.8 q^{97} -55727.9 q^{98} +28906.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 9 q^{3} + 32 q^{4} + 73 q^{5} + 36 q^{6} + 155 q^{7} + 128 q^{8} - 21 q^{9} + 292 q^{10} - 220 q^{11} + 144 q^{12} - 338 q^{13} + 620 q^{14} - 945 q^{15} + 512 q^{16} - 189 q^{17} - 84 q^{18}+ \cdots + 94002 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 19.0688 1.22326 0.611632 0.791142i \(-0.290513\pi\)
0.611632 + 0.791142i \(0.290513\pi\)
\(4\) 16.0000 0.500000
\(5\) −7.20641 −0.128912 −0.0644561 0.997921i \(-0.520531\pi\)
−0.0644561 + 0.997921i \(0.520531\pi\)
\(6\) 76.2752 0.864978
\(7\) −53.6192 −0.413595 −0.206798 0.978384i \(-0.566304\pi\)
−0.206798 + 0.978384i \(0.566304\pi\)
\(8\) 64.0000 0.353553
\(9\) 120.619 0.496375
\(10\) −28.8256 −0.0911546
\(11\) 239.651 0.597170 0.298585 0.954383i \(-0.403485\pi\)
0.298585 + 0.954383i \(0.403485\pi\)
\(12\) 305.101 0.611632
\(13\) −169.000 −0.277350
\(14\) −214.477 −0.292456
\(15\) −137.418 −0.157694
\(16\) 256.000 0.250000
\(17\) −1973.88 −1.65652 −0.828261 0.560342i \(-0.810670\pi\)
−0.828261 + 0.560342i \(0.810670\pi\)
\(18\) 482.477 0.350990
\(19\) −373.872 −0.237596 −0.118798 0.992918i \(-0.537904\pi\)
−0.118798 + 0.992918i \(0.537904\pi\)
\(20\) −115.303 −0.0644561
\(21\) −1022.45 −0.505936
\(22\) 958.605 0.422263
\(23\) 51.4306 0.0202723 0.0101361 0.999949i \(-0.496774\pi\)
0.0101361 + 0.999949i \(0.496774\pi\)
\(24\) 1220.40 0.432489
\(25\) −3073.07 −0.983382
\(26\) −676.000 −0.196116
\(27\) −2333.65 −0.616066
\(28\) −857.908 −0.206798
\(29\) 4796.16 1.05901 0.529504 0.848308i \(-0.322378\pi\)
0.529504 + 0.848308i \(0.322378\pi\)
\(30\) −549.670 −0.111506
\(31\) 6906.01 1.29069 0.645346 0.763890i \(-0.276713\pi\)
0.645346 + 0.763890i \(0.276713\pi\)
\(32\) 1024.00 0.176777
\(33\) 4569.86 0.730497
\(34\) −7895.50 −1.17134
\(35\) 386.402 0.0533174
\(36\) 1929.91 0.248188
\(37\) 11481.2 1.37874 0.689370 0.724410i \(-0.257888\pi\)
0.689370 + 0.724410i \(0.257888\pi\)
\(38\) −1495.49 −0.168006
\(39\) −3222.63 −0.339272
\(40\) −461.210 −0.0455773
\(41\) 12547.8 1.16576 0.582878 0.812560i \(-0.301927\pi\)
0.582878 + 0.812560i \(0.301927\pi\)
\(42\) −4089.82 −0.357751
\(43\) 1156.07 0.0953481 0.0476741 0.998863i \(-0.484819\pi\)
0.0476741 + 0.998863i \(0.484819\pi\)
\(44\) 3834.42 0.298585
\(45\) −869.231 −0.0639888
\(46\) 205.723 0.0143347
\(47\) −18644.9 −1.23116 −0.615580 0.788074i \(-0.711078\pi\)
−0.615580 + 0.788074i \(0.711078\pi\)
\(48\) 4881.61 0.305816
\(49\) −13932.0 −0.828939
\(50\) −12292.3 −0.695356
\(51\) −37639.4 −2.02637
\(52\) −2704.00 −0.138675
\(53\) 9318.90 0.455696 0.227848 0.973697i \(-0.426831\pi\)
0.227848 + 0.973697i \(0.426831\pi\)
\(54\) −9334.62 −0.435624
\(55\) −1727.02 −0.0769825
\(56\) −3431.63 −0.146228
\(57\) −7129.29 −0.290642
\(58\) 19184.7 0.748831
\(59\) −5066.63 −0.189491 −0.0947456 0.995502i \(-0.530204\pi\)
−0.0947456 + 0.995502i \(0.530204\pi\)
\(60\) −2198.68 −0.0788468
\(61\) 54271.7 1.86745 0.933724 0.357994i \(-0.116539\pi\)
0.933724 + 0.357994i \(0.116539\pi\)
\(62\) 27624.0 0.912657
\(63\) −6467.51 −0.205298
\(64\) 4096.00 0.125000
\(65\) 1217.88 0.0357538
\(66\) 18279.4 0.516539
\(67\) 40241.0 1.09517 0.547585 0.836750i \(-0.315547\pi\)
0.547585 + 0.836750i \(0.315547\pi\)
\(68\) −31582.0 −0.828261
\(69\) 980.721 0.0247983
\(70\) 1545.61 0.0377011
\(71\) −65236.5 −1.53584 −0.767918 0.640549i \(-0.778707\pi\)
−0.767918 + 0.640549i \(0.778707\pi\)
\(72\) 7719.63 0.175495
\(73\) 68506.2 1.50461 0.752303 0.658818i \(-0.228943\pi\)
0.752303 + 0.658818i \(0.228943\pi\)
\(74\) 45924.7 0.974916
\(75\) −58599.7 −1.20294
\(76\) −5981.95 −0.118798
\(77\) −12849.9 −0.246987
\(78\) −12890.5 −0.239902
\(79\) 10627.3 0.191583 0.0957915 0.995401i \(-0.469462\pi\)
0.0957915 + 0.995401i \(0.469462\pi\)
\(80\) −1844.84 −0.0322280
\(81\) −73810.5 −1.24999
\(82\) 50191.1 0.824314
\(83\) −2357.98 −0.0375703 −0.0187851 0.999824i \(-0.505980\pi\)
−0.0187851 + 0.999824i \(0.505980\pi\)
\(84\) −16359.3 −0.252968
\(85\) 14224.5 0.213546
\(86\) 4624.27 0.0674213
\(87\) 91457.1 1.29545
\(88\) 15337.7 0.211131
\(89\) −93620.0 −1.25283 −0.626417 0.779488i \(-0.715479\pi\)
−0.626417 + 0.779488i \(0.715479\pi\)
\(90\) −3476.92 −0.0452469
\(91\) 9061.65 0.114711
\(92\) 822.890 0.0101361
\(93\) 131689. 1.57886
\(94\) −74579.5 −0.870562
\(95\) 2694.27 0.0306290
\(96\) 19526.5 0.216245
\(97\) −31195.8 −0.336641 −0.168321 0.985732i \(-0.553834\pi\)
−0.168321 + 0.985732i \(0.553834\pi\)
\(98\) −55727.9 −0.586148
\(99\) 28906.5 0.296421
\(100\) −49169.1 −0.491691
\(101\) −86948.6 −0.848124 −0.424062 0.905633i \(-0.639396\pi\)
−0.424062 + 0.905633i \(0.639396\pi\)
\(102\) −150558. −1.43286
\(103\) −43111.1 −0.400402 −0.200201 0.979755i \(-0.564159\pi\)
−0.200201 + 0.979755i \(0.564159\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 7368.22 0.0652213
\(106\) 37275.6 0.322226
\(107\) −175966. −1.48583 −0.742913 0.669388i \(-0.766557\pi\)
−0.742913 + 0.669388i \(0.766557\pi\)
\(108\) −37338.5 −0.308033
\(109\) 119578. 0.964020 0.482010 0.876166i \(-0.339907\pi\)
0.482010 + 0.876166i \(0.339907\pi\)
\(110\) −6908.10 −0.0544348
\(111\) 218932. 1.68656
\(112\) −13726.5 −0.103399
\(113\) 47558.0 0.350370 0.175185 0.984536i \(-0.443948\pi\)
0.175185 + 0.984536i \(0.443948\pi\)
\(114\) −28517.2 −0.205515
\(115\) −370.630 −0.00261334
\(116\) 76738.6 0.529504
\(117\) −20384.6 −0.137670
\(118\) −20266.5 −0.133990
\(119\) 105838. 0.685130
\(120\) −8794.72 −0.0557531
\(121\) −103618. −0.643388
\(122\) 217087. 1.32049
\(123\) 239271. 1.42603
\(124\) 110496. 0.645346
\(125\) 44665.8 0.255682
\(126\) −25870.0 −0.145168
\(127\) −108774. −0.598433 −0.299217 0.954185i \(-0.596725\pi\)
−0.299217 + 0.954185i \(0.596725\pi\)
\(128\) 16384.0 0.0883883
\(129\) 22044.8 0.116636
\(130\) 4871.53 0.0252817
\(131\) −340486. −1.73349 −0.866744 0.498753i \(-0.833791\pi\)
−0.866744 + 0.498753i \(0.833791\pi\)
\(132\) 73117.8 0.365248
\(133\) 20046.7 0.0982685
\(134\) 160964. 0.774402
\(135\) 16817.3 0.0794184
\(136\) −126328. −0.585669
\(137\) 48143.4 0.219147 0.109574 0.993979i \(-0.465051\pi\)
0.109574 + 0.993979i \(0.465051\pi\)
\(138\) 3922.88 0.0175351
\(139\) 323803. 1.42149 0.710745 0.703450i \(-0.248358\pi\)
0.710745 + 0.703450i \(0.248358\pi\)
\(140\) 6182.43 0.0266587
\(141\) −355535. −1.50603
\(142\) −260946. −1.08600
\(143\) −40501.1 −0.165625
\(144\) 30878.5 0.124094
\(145\) −34563.1 −0.136519
\(146\) 274025. 1.06392
\(147\) −265666. −1.01401
\(148\) 183699. 0.689370
\(149\) 372945. 1.37619 0.688096 0.725620i \(-0.258447\pi\)
0.688096 + 0.725620i \(0.258447\pi\)
\(150\) −234399. −0.850604
\(151\) −159735. −0.570110 −0.285055 0.958511i \(-0.592012\pi\)
−0.285055 + 0.958511i \(0.592012\pi\)
\(152\) −23927.8 −0.0840028
\(153\) −238087. −0.822257
\(154\) −51399.7 −0.174646
\(155\) −49767.5 −0.166386
\(156\) −51562.0 −0.169636
\(157\) −484134. −1.56753 −0.783765 0.621057i \(-0.786704\pi\)
−0.783765 + 0.621057i \(0.786704\pi\)
\(158\) 42509.4 0.135470
\(159\) 177700. 0.557437
\(160\) −7379.36 −0.0227887
\(161\) −2757.67 −0.00838451
\(162\) −295242. −0.883874
\(163\) −140172. −0.413232 −0.206616 0.978422i \(-0.566245\pi\)
−0.206616 + 0.978422i \(0.566245\pi\)
\(164\) 200765. 0.582878
\(165\) −32932.3 −0.0941699
\(166\) −9431.91 −0.0265662
\(167\) 218046. 0.605002 0.302501 0.953149i \(-0.402178\pi\)
0.302501 + 0.953149i \(0.402178\pi\)
\(168\) −65437.1 −0.178875
\(169\) 28561.0 0.0769231
\(170\) 56898.2 0.151000
\(171\) −45096.1 −0.117937
\(172\) 18497.1 0.0476741
\(173\) −384852. −0.977638 −0.488819 0.872385i \(-0.662572\pi\)
−0.488819 + 0.872385i \(0.662572\pi\)
\(174\) 365828. 0.916019
\(175\) 164775. 0.406722
\(176\) 61350.7 0.149293
\(177\) −96614.5 −0.231798
\(178\) −374480. −0.885888
\(179\) 498273. 1.16234 0.581172 0.813781i \(-0.302595\pi\)
0.581172 + 0.813781i \(0.302595\pi\)
\(180\) −13907.7 −0.0319944
\(181\) 152201. 0.345320 0.172660 0.984981i \(-0.444764\pi\)
0.172660 + 0.984981i \(0.444764\pi\)
\(182\) 36246.6 0.0811127
\(183\) 1.03490e6 2.28438
\(184\) 3291.56 0.00716733
\(185\) −82738.0 −0.177736
\(186\) 526757. 1.11642
\(187\) −473042. −0.989226
\(188\) −298318. −0.615580
\(189\) 125129. 0.254802
\(190\) 10777.1 0.0216580
\(191\) 600284. 1.19062 0.595310 0.803496i \(-0.297029\pi\)
0.595310 + 0.803496i \(0.297029\pi\)
\(192\) 78105.8 0.152908
\(193\) 350804. 0.677909 0.338955 0.940803i \(-0.389927\pi\)
0.338955 + 0.940803i \(0.389927\pi\)
\(194\) −124783. −0.238041
\(195\) 23223.6 0.0437363
\(196\) −222912. −0.414470
\(197\) −321145. −0.589571 −0.294785 0.955563i \(-0.595248\pi\)
−0.294785 + 0.955563i \(0.595248\pi\)
\(198\) 115626. 0.209601
\(199\) 561416. 1.00497 0.502484 0.864586i \(-0.332420\pi\)
0.502484 + 0.864586i \(0.332420\pi\)
\(200\) −196676. −0.347678
\(201\) 767347. 1.33968
\(202\) −347794. −0.599714
\(203\) −257167. −0.438000
\(204\) −602231. −1.01318
\(205\) −90424.5 −0.150280
\(206\) −172444. −0.283127
\(207\) 6203.52 0.0100627
\(208\) −43264.0 −0.0693375
\(209\) −89598.9 −0.141885
\(210\) 29472.9 0.0461184
\(211\) −751002. −1.16127 −0.580637 0.814162i \(-0.697196\pi\)
−0.580637 + 0.814162i \(0.697196\pi\)
\(212\) 149102. 0.227848
\(213\) −1.24398e6 −1.87873
\(214\) −703862. −1.05064
\(215\) −8331.09 −0.0122915
\(216\) −149354. −0.217812
\(217\) −370295. −0.533824
\(218\) 478313. 0.681665
\(219\) 1.30633e6 1.84053
\(220\) −27632.4 −0.0384912
\(221\) 333585. 0.459437
\(222\) 875729. 1.19258
\(223\) −598906. −0.806485 −0.403243 0.915093i \(-0.632117\pi\)
−0.403243 + 0.915093i \(0.632117\pi\)
\(224\) −54906.1 −0.0731140
\(225\) −370671. −0.488126
\(226\) 190232. 0.247749
\(227\) −1.32303e6 −1.70414 −0.852071 0.523426i \(-0.824654\pi\)
−0.852071 + 0.523426i \(0.824654\pi\)
\(228\) −114069. −0.145321
\(229\) 115752. 0.145861 0.0729307 0.997337i \(-0.476765\pi\)
0.0729307 + 0.997337i \(0.476765\pi\)
\(230\) −1482.52 −0.00184791
\(231\) −245032. −0.302130
\(232\) 306954. 0.374416
\(233\) 1.21925e6 1.47131 0.735655 0.677357i \(-0.236875\pi\)
0.735655 + 0.677357i \(0.236875\pi\)
\(234\) −81538.6 −0.0973472
\(235\) 134362. 0.158711
\(236\) −81066.0 −0.0947456
\(237\) 202651. 0.234357
\(238\) 423351. 0.484460
\(239\) −1.66823e6 −1.88913 −0.944565 0.328323i \(-0.893516\pi\)
−0.944565 + 0.328323i \(0.893516\pi\)
\(240\) −35178.9 −0.0394234
\(241\) 847710. 0.940167 0.470083 0.882622i \(-0.344224\pi\)
0.470083 + 0.882622i \(0.344224\pi\)
\(242\) −414473. −0.454944
\(243\) −840399. −0.912998
\(244\) 868347. 0.933724
\(245\) 100400. 0.106860
\(246\) 957085. 1.00835
\(247\) 63184.3 0.0658972
\(248\) 441984. 0.456329
\(249\) −44963.8 −0.0459584
\(250\) 178663. 0.180794
\(251\) −1.09148e6 −1.09353 −0.546765 0.837286i \(-0.684141\pi\)
−0.546765 + 0.837286i \(0.684141\pi\)
\(252\) −103480. −0.102649
\(253\) 12325.4 0.0121060
\(254\) −435096. −0.423156
\(255\) 271245. 0.261223
\(256\) 65536.0 0.0625000
\(257\) −10510.6 −0.00992644 −0.00496322 0.999988i \(-0.501580\pi\)
−0.00496322 + 0.999988i \(0.501580\pi\)
\(258\) 88179.3 0.0824741
\(259\) −615612. −0.570240
\(260\) 19486.1 0.0178769
\(261\) 578510. 0.525665
\(262\) −1.36194e6 −1.22576
\(263\) 1.66350e6 1.48297 0.741487 0.670967i \(-0.234121\pi\)
0.741487 + 0.670967i \(0.234121\pi\)
\(264\) 292471. 0.258270
\(265\) −67155.8 −0.0587447
\(266\) 80186.9 0.0694863
\(267\) −1.78522e6 −1.53255
\(268\) 643856. 0.547585
\(269\) −123097. −0.103721 −0.0518606 0.998654i \(-0.516515\pi\)
−0.0518606 + 0.998654i \(0.516515\pi\)
\(270\) 67269.1 0.0561573
\(271\) 2.14956e6 1.77798 0.888991 0.457925i \(-0.151407\pi\)
0.888991 + 0.457925i \(0.151407\pi\)
\(272\) −505312. −0.414131
\(273\) 172795. 0.140321
\(274\) 192574. 0.154960
\(275\) −736465. −0.587246
\(276\) 15691.5 0.0123992
\(277\) 818582. 0.641007 0.320503 0.947247i \(-0.396148\pi\)
0.320503 + 0.947247i \(0.396148\pi\)
\(278\) 1.29521e6 1.00514
\(279\) 832997. 0.640668
\(280\) 24729.7 0.0188506
\(281\) 1.38003e6 1.04261 0.521305 0.853370i \(-0.325445\pi\)
0.521305 + 0.853370i \(0.325445\pi\)
\(282\) −1.42214e6 −1.06493
\(283\) 395823. 0.293788 0.146894 0.989152i \(-0.453072\pi\)
0.146894 + 0.989152i \(0.453072\pi\)
\(284\) −1.04378e6 −0.767918
\(285\) 51376.6 0.0374673
\(286\) −162004. −0.117115
\(287\) −672803. −0.482151
\(288\) 123514. 0.0877476
\(289\) 2.47633e6 1.74407
\(290\) −138252. −0.0965334
\(291\) −594867. −0.411801
\(292\) 1.09610e6 0.752303
\(293\) 382789. 0.260490 0.130245 0.991482i \(-0.458424\pi\)
0.130245 + 0.991482i \(0.458424\pi\)
\(294\) −1.06266e6 −0.717014
\(295\) 36512.2 0.0244277
\(296\) 734795. 0.487458
\(297\) −559263. −0.367896
\(298\) 1.49178e6 0.973115
\(299\) −8691.78 −0.00562252
\(300\) −937596. −0.601468
\(301\) −61987.4 −0.0394355
\(302\) −638941. −0.403129
\(303\) −1.65801e6 −1.03748
\(304\) −95711.2 −0.0593990
\(305\) −391104. −0.240737
\(306\) −952349. −0.581424
\(307\) −2.95976e6 −1.79230 −0.896150 0.443751i \(-0.853648\pi\)
−0.896150 + 0.443751i \(0.853648\pi\)
\(308\) −205599. −0.123493
\(309\) −822077. −0.489797
\(310\) −199070. −0.117653
\(311\) −536900. −0.314770 −0.157385 0.987537i \(-0.550306\pi\)
−0.157385 + 0.987537i \(0.550306\pi\)
\(312\) −206248. −0.119951
\(313\) −3.33301e6 −1.92299 −0.961493 0.274829i \(-0.911379\pi\)
−0.961493 + 0.274829i \(0.911379\pi\)
\(314\) −1.93653e6 −1.10841
\(315\) 46607.5 0.0264655
\(316\) 170038. 0.0957915
\(317\) 1.50100e6 0.838943 0.419472 0.907768i \(-0.362215\pi\)
0.419472 + 0.907768i \(0.362215\pi\)
\(318\) 710801. 0.394167
\(319\) 1.14941e6 0.632407
\(320\) −29517.4 −0.0161140
\(321\) −3.35545e6 −1.81756
\(322\) −11030.7 −0.00592875
\(323\) 737977. 0.393583
\(324\) −1.18097e6 −0.624993
\(325\) 519348. 0.272741
\(326\) −560690. −0.292199
\(327\) 2.28022e6 1.17925
\(328\) 803058. 0.412157
\(329\) 999723. 0.509202
\(330\) −131729. −0.0665882
\(331\) 2.17404e6 1.09068 0.545341 0.838214i \(-0.316400\pi\)
0.545341 + 0.838214i \(0.316400\pi\)
\(332\) −37727.7 −0.0187851
\(333\) 1.38485e6 0.684372
\(334\) 872184. 0.427801
\(335\) −289993. −0.141181
\(336\) −261748. −0.126484
\(337\) 821494. 0.394030 0.197015 0.980400i \(-0.436875\pi\)
0.197015 + 0.980400i \(0.436875\pi\)
\(338\) 114244. 0.0543928
\(339\) 906874. 0.428595
\(340\) 227593. 0.106773
\(341\) 1.65503e6 0.770763
\(342\) −180385. −0.0833939
\(343\) 1.64820e6 0.756440
\(344\) 73988.3 0.0337107
\(345\) −7067.47 −0.00319681
\(346\) −1.53941e6 −0.691295
\(347\) 1.75897e6 0.784216 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(348\) 1.46331e6 0.647723
\(349\) −3.15359e6 −1.38593 −0.692965 0.720971i \(-0.743696\pi\)
−0.692965 + 0.720971i \(0.743696\pi\)
\(350\) 659102. 0.287596
\(351\) 394388. 0.170866
\(352\) 245403. 0.105566
\(353\) −1.51456e6 −0.646918 −0.323459 0.946242i \(-0.604846\pi\)
−0.323459 + 0.946242i \(0.604846\pi\)
\(354\) −386458. −0.163906
\(355\) 470121. 0.197988
\(356\) −1.49792e6 −0.626417
\(357\) 2.01820e6 0.838095
\(358\) 1.99309e6 0.821901
\(359\) 1.68935e6 0.691803 0.345902 0.938271i \(-0.387573\pi\)
0.345902 + 0.938271i \(0.387573\pi\)
\(360\) −55630.8 −0.0226235
\(361\) −2.33632e6 −0.943548
\(362\) 608805. 0.244178
\(363\) −1.97588e6 −0.787033
\(364\) 144986. 0.0573553
\(365\) −493683. −0.193962
\(366\) 4.13958e6 1.61530
\(367\) −1.87184e6 −0.725443 −0.362722 0.931898i \(-0.618152\pi\)
−0.362722 + 0.931898i \(0.618152\pi\)
\(368\) 13166.2 0.00506807
\(369\) 1.51350e6 0.578652
\(370\) −330952. −0.125678
\(371\) −499672. −0.188474
\(372\) 2.10703e6 0.789429
\(373\) 628003. 0.233717 0.116858 0.993149i \(-0.462718\pi\)
0.116858 + 0.993149i \(0.462718\pi\)
\(374\) −1.89217e6 −0.699488
\(375\) 851723. 0.312767
\(376\) −1.19327e6 −0.435281
\(377\) −810552. −0.293716
\(378\) 500515. 0.180172
\(379\) 478225. 0.171015 0.0855076 0.996338i \(-0.472749\pi\)
0.0855076 + 0.996338i \(0.472749\pi\)
\(380\) 43108.4 0.0153145
\(381\) −2.07419e6 −0.732042
\(382\) 2.40114e6 0.841895
\(383\) −4.58548e6 −1.59731 −0.798653 0.601791i \(-0.794454\pi\)
−0.798653 + 0.601791i \(0.794454\pi\)
\(384\) 312423. 0.108122
\(385\) 92601.7 0.0318396
\(386\) 1.40322e6 0.479354
\(387\) 139444. 0.0473285
\(388\) −499133. −0.168321
\(389\) 2.62136e6 0.878318 0.439159 0.898409i \(-0.355276\pi\)
0.439159 + 0.898409i \(0.355276\pi\)
\(390\) 92894.3 0.0309263
\(391\) −101518. −0.0335815
\(392\) −891647. −0.293074
\(393\) −6.49266e6 −2.12051
\(394\) −1.28458e6 −0.416890
\(395\) −76585.0 −0.0246974
\(396\) 462505. 0.148210
\(397\) 961154. 0.306067 0.153034 0.988221i \(-0.451096\pi\)
0.153034 + 0.988221i \(0.451096\pi\)
\(398\) 2.24567e6 0.710620
\(399\) 382267. 0.120208
\(400\) −786705. −0.245845
\(401\) −4.00559e6 −1.24396 −0.621978 0.783034i \(-0.713671\pi\)
−0.621978 + 0.783034i \(0.713671\pi\)
\(402\) 3.06939e6 0.947299
\(403\) −1.16712e6 −0.357974
\(404\) −1.39118e6 −0.424062
\(405\) 531908. 0.161138
\(406\) −1.02867e6 −0.309713
\(407\) 2.75148e6 0.823342
\(408\) −2.40892e6 −0.716428
\(409\) −3.12530e6 −0.923813 −0.461906 0.886929i \(-0.652834\pi\)
−0.461906 + 0.886929i \(0.652834\pi\)
\(410\) −361698. −0.106264
\(411\) 918038. 0.268075
\(412\) −689777. −0.200201
\(413\) 271669. 0.0783726
\(414\) 24814.1 0.00711537
\(415\) 16992.6 0.00484327
\(416\) −173056. −0.0490290
\(417\) 6.17453e6 1.73886
\(418\) −358395. −0.100328
\(419\) −3.34877e6 −0.931859 −0.465929 0.884822i \(-0.654280\pi\)
−0.465929 + 0.884822i \(0.654280\pi\)
\(420\) 117892. 0.0326106
\(421\) −3.01332e6 −0.828591 −0.414295 0.910143i \(-0.635972\pi\)
−0.414295 + 0.910143i \(0.635972\pi\)
\(422\) −3.00401e6 −0.821145
\(423\) −2.24893e6 −0.611118
\(424\) 596410. 0.161113
\(425\) 6.06585e6 1.62899
\(426\) −4.97593e6 −1.32846
\(427\) −2.91000e6 −0.772367
\(428\) −2.81545e6 −0.742913
\(429\) −772307. −0.202603
\(430\) −33324.4 −0.00869142
\(431\) 3.35224e6 0.869245 0.434623 0.900613i \(-0.356882\pi\)
0.434623 + 0.900613i \(0.356882\pi\)
\(432\) −597416. −0.154016
\(433\) 1.62188e6 0.415719 0.207859 0.978159i \(-0.433350\pi\)
0.207859 + 0.978159i \(0.433350\pi\)
\(434\) −1.48118e6 −0.377471
\(435\) −659077. −0.166999
\(436\) 1.91325e6 0.482010
\(437\) −19228.5 −0.00481661
\(438\) 5.22532e6 1.30145
\(439\) 7.48948e6 1.85477 0.927386 0.374106i \(-0.122050\pi\)
0.927386 + 0.374106i \(0.122050\pi\)
\(440\) −110530. −0.0272174
\(441\) −1.68046e6 −0.411465
\(442\) 1.33434e6 0.324871
\(443\) 1.90156e6 0.460364 0.230182 0.973148i \(-0.426068\pi\)
0.230182 + 0.973148i \(0.426068\pi\)
\(444\) 3.50292e6 0.843281
\(445\) 674664. 0.161506
\(446\) −2.39562e6 −0.570271
\(447\) 7.11161e6 1.68345
\(448\) −219624. −0.0516994
\(449\) 1.62580e6 0.380585 0.190293 0.981727i \(-0.439056\pi\)
0.190293 + 0.981727i \(0.439056\pi\)
\(450\) −1.48268e6 −0.345158
\(451\) 3.00709e6 0.696154
\(452\) 760928. 0.175185
\(453\) −3.04596e6 −0.697395
\(454\) −5.29213e6 −1.20501
\(455\) −65301.9 −0.0147876
\(456\) −456274. −0.102758
\(457\) 1.50323e6 0.336694 0.168347 0.985728i \(-0.446157\pi\)
0.168347 + 0.985728i \(0.446157\pi\)
\(458\) 463009. 0.103140
\(459\) 4.60634e6 1.02053
\(460\) −5930.08 −0.00130667
\(461\) 549546. 0.120435 0.0602173 0.998185i \(-0.480821\pi\)
0.0602173 + 0.998185i \(0.480821\pi\)
\(462\) −980130. −0.213638
\(463\) −3.34547e6 −0.725279 −0.362640 0.931929i \(-0.618124\pi\)
−0.362640 + 0.931929i \(0.618124\pi\)
\(464\) 1.22782e6 0.264752
\(465\) −949007. −0.203534
\(466\) 4.87701e6 1.04037
\(467\) 2.20487e6 0.467833 0.233916 0.972257i \(-0.424846\pi\)
0.233916 + 0.972257i \(0.424846\pi\)
\(468\) −326154. −0.0688349
\(469\) −2.15769e6 −0.452957
\(470\) 537450. 0.112226
\(471\) −9.23185e6 −1.91750
\(472\) −324264. −0.0669952
\(473\) 277053. 0.0569390
\(474\) 810603. 0.165715
\(475\) 1.14893e6 0.233647
\(476\) 1.69340e6 0.342565
\(477\) 1.12404e6 0.226196
\(478\) −6.67293e6 −1.33582
\(479\) −655516. −0.130540 −0.0652702 0.997868i \(-0.520791\pi\)
−0.0652702 + 0.997868i \(0.520791\pi\)
\(480\) −140716. −0.0278766
\(481\) −1.94032e6 −0.382393
\(482\) 3.39084e6 0.664798
\(483\) −52585.5 −0.0102565
\(484\) −1.65789e6 −0.321694
\(485\) 224810. 0.0433971
\(486\) −3.36160e6 −0.645587
\(487\) 1.70140e6 0.325076 0.162538 0.986702i \(-0.448032\pi\)
0.162538 + 0.986702i \(0.448032\pi\)
\(488\) 3.47339e6 0.660243
\(489\) −2.67292e6 −0.505491
\(490\) 401598. 0.0755616
\(491\) 1.54564e6 0.289338 0.144669 0.989480i \(-0.453788\pi\)
0.144669 + 0.989480i \(0.453788\pi\)
\(492\) 3.82834e6 0.713014
\(493\) −9.46703e6 −1.75427
\(494\) 252737. 0.0465964
\(495\) −208312. −0.0382122
\(496\) 1.76794e6 0.322673
\(497\) 3.49793e6 0.635214
\(498\) −179855. −0.0324975
\(499\) 5.57437e6 1.00218 0.501089 0.865396i \(-0.332933\pi\)
0.501089 + 0.865396i \(0.332933\pi\)
\(500\) 714653. 0.127841
\(501\) 4.15788e6 0.740078
\(502\) −4.36591e6 −0.773243
\(503\) 318350. 0.0561028 0.0280514 0.999606i \(-0.491070\pi\)
0.0280514 + 0.999606i \(0.491070\pi\)
\(504\) −413921. −0.0725840
\(505\) 626587. 0.109333
\(506\) 49301.7 0.00856023
\(507\) 544624. 0.0940972
\(508\) −1.74038e6 −0.299217
\(509\) 265194. 0.0453701 0.0226851 0.999743i \(-0.492779\pi\)
0.0226851 + 0.999743i \(0.492779\pi\)
\(510\) 1.08498e6 0.184713
\(511\) −3.67325e6 −0.622297
\(512\) 262144. 0.0441942
\(513\) 872488. 0.146375
\(514\) −42042.3 −0.00701906
\(515\) 310676. 0.0516166
\(516\) 352717. 0.0583180
\(517\) −4.46827e6 −0.735212
\(518\) −2.46245e6 −0.403220
\(519\) −7.33866e6 −1.19591
\(520\) 77944.5 0.0126409
\(521\) 1.91132e6 0.308489 0.154245 0.988033i \(-0.450706\pi\)
0.154245 + 0.988033i \(0.450706\pi\)
\(522\) 2.31404e6 0.371701
\(523\) 4.75910e6 0.760801 0.380400 0.924822i \(-0.375786\pi\)
0.380400 + 0.924822i \(0.375786\pi\)
\(524\) −5.44777e6 −0.866744
\(525\) 3.14207e6 0.497528
\(526\) 6.65400e6 1.04862
\(527\) −1.36316e7 −2.13806
\(528\) 1.16988e6 0.182624
\(529\) −6.43370e6 −0.999589
\(530\) −268623. −0.0415388
\(531\) −611132. −0.0940587
\(532\) 320747. 0.0491342
\(533\) −2.12058e6 −0.323322
\(534\) −7.14089e6 −1.08367
\(535\) 1.26808e6 0.191541
\(536\) 2.57542e6 0.387201
\(537\) 9.50146e6 1.42185
\(538\) −492389. −0.0733420
\(539\) −3.33882e6 −0.495018
\(540\) 269076. 0.0397092
\(541\) −1.03919e7 −1.52652 −0.763261 0.646090i \(-0.776403\pi\)
−0.763261 + 0.646090i \(0.776403\pi\)
\(542\) 8.59826e6 1.25722
\(543\) 2.90230e6 0.422418
\(544\) −2.02125e6 −0.292835
\(545\) −861730. −0.124274
\(546\) 691179. 0.0992222
\(547\) −9.00790e6 −1.28723 −0.643614 0.765350i \(-0.722566\pi\)
−0.643614 + 0.765350i \(0.722566\pi\)
\(548\) 770295. 0.109574
\(549\) 6.54621e6 0.926955
\(550\) −2.94586e6 −0.415246
\(551\) −1.79315e6 −0.251616
\(552\) 62766.1 0.00876754
\(553\) −569830. −0.0792378
\(554\) 3.27433e6 0.453260
\(555\) −1.57772e6 −0.217418
\(556\) 5.18084e6 0.710745
\(557\) 1.61153e6 0.220090 0.110045 0.993927i \(-0.464901\pi\)
0.110045 + 0.993927i \(0.464901\pi\)
\(558\) 3.33199e6 0.453021
\(559\) −195375. −0.0264448
\(560\) 98918.9 0.0133294
\(561\) −9.02034e6 −1.21008
\(562\) 5.52011e6 0.737237
\(563\) −5.73380e6 −0.762380 −0.381190 0.924497i \(-0.624486\pi\)
−0.381190 + 0.924497i \(0.624486\pi\)
\(564\) −5.68856e6 −0.753017
\(565\) −342722. −0.0451670
\(566\) 1.58329e6 0.207740
\(567\) 3.95766e6 0.516988
\(568\) −4.17513e6 −0.543000
\(569\) 4.81958e6 0.624063 0.312032 0.950072i \(-0.398991\pi\)
0.312032 + 0.950072i \(0.398991\pi\)
\(570\) 205506. 0.0264934
\(571\) 7.86132e6 1.00903 0.504517 0.863402i \(-0.331671\pi\)
0.504517 + 0.863402i \(0.331671\pi\)
\(572\) −648017. −0.0828126
\(573\) 1.14467e7 1.45644
\(574\) −2.69121e6 −0.340932
\(575\) −158050. −0.0199354
\(576\) 494056. 0.0620469
\(577\) 1.55342e7 1.94244 0.971221 0.238179i \(-0.0765504\pi\)
0.971221 + 0.238179i \(0.0765504\pi\)
\(578\) 9.90531e6 1.23324
\(579\) 6.68942e6 0.829262
\(580\) −553010. −0.0682594
\(581\) 126433. 0.0155389
\(582\) −2.37947e6 −0.291187
\(583\) 2.23329e6 0.272128
\(584\) 4.38440e6 0.531958
\(585\) 146900. 0.0177473
\(586\) 1.53116e6 0.184194
\(587\) −1.84016e6 −0.220425 −0.110212 0.993908i \(-0.535153\pi\)
−0.110212 + 0.993908i \(0.535153\pi\)
\(588\) −4.25066e6 −0.507006
\(589\) −2.58196e6 −0.306663
\(590\) 146049. 0.0172730
\(591\) −6.12386e6 −0.721201
\(592\) 2.93918e6 0.344685
\(593\) 1.11019e7 1.29646 0.648230 0.761445i \(-0.275510\pi\)
0.648230 + 0.761445i \(0.275510\pi\)
\(594\) −2.23705e6 −0.260142
\(595\) −762709. −0.0883215
\(596\) 5.96712e6 0.688096
\(597\) 1.07055e7 1.22934
\(598\) −34767.1 −0.00397572
\(599\) −1.34553e7 −1.53224 −0.766122 0.642696i \(-0.777816\pi\)
−0.766122 + 0.642696i \(0.777816\pi\)
\(600\) −3.75038e6 −0.425302
\(601\) 1.49829e7 1.69204 0.846020 0.533151i \(-0.178992\pi\)
0.846020 + 0.533151i \(0.178992\pi\)
\(602\) −247950. −0.0278851
\(603\) 4.85384e6 0.543616
\(604\) −2.55577e6 −0.285055
\(605\) 746715. 0.0829405
\(606\) −6.63202e6 −0.733609
\(607\) −1.18436e7 −1.30471 −0.652353 0.757915i \(-0.726218\pi\)
−0.652353 + 0.757915i \(0.726218\pi\)
\(608\) −382845. −0.0420014
\(609\) −4.90386e6 −0.535790
\(610\) −1.56441e6 −0.170227
\(611\) 3.15098e6 0.341462
\(612\) −3.80940e6 −0.411129
\(613\) 6.44924e6 0.693198 0.346599 0.938013i \(-0.387336\pi\)
0.346599 + 0.938013i \(0.387336\pi\)
\(614\) −1.18390e7 −1.26735
\(615\) −1.72429e6 −0.183832
\(616\) −822394. −0.0873229
\(617\) −1.10487e7 −1.16842 −0.584210 0.811602i \(-0.698596\pi\)
−0.584210 + 0.811602i \(0.698596\pi\)
\(618\) −3.28831e6 −0.346339
\(619\) 7.71392e6 0.809186 0.404593 0.914497i \(-0.367413\pi\)
0.404593 + 0.914497i \(0.367413\pi\)
\(620\) −796280. −0.0831930
\(621\) −120021. −0.0124891
\(622\) −2.14760e6 −0.222576
\(623\) 5.01983e6 0.518166
\(624\) −824993. −0.0848181
\(625\) 9.28146e6 0.950421
\(626\) −1.33321e7 −1.35976
\(627\) −1.70854e6 −0.173563
\(628\) −7.74614e6 −0.783765
\(629\) −2.26624e7 −2.28391
\(630\) 186430. 0.0187139
\(631\) −9.79932e6 −0.979767 −0.489883 0.871788i \(-0.662961\pi\)
−0.489883 + 0.871788i \(0.662961\pi\)
\(632\) 680150. 0.0677348
\(633\) −1.43207e7 −1.42055
\(634\) 6.00400e6 0.593222
\(635\) 783870. 0.0771453
\(636\) 2.84321e6 0.278718
\(637\) 2.35450e6 0.229906
\(638\) 4.59763e6 0.447180
\(639\) −7.86877e6 −0.762351
\(640\) −118070. −0.0113943
\(641\) 1.53393e7 1.47455 0.737275 0.675593i \(-0.236112\pi\)
0.737275 + 0.675593i \(0.236112\pi\)
\(642\) −1.34218e7 −1.28521
\(643\) 1.45341e7 1.38631 0.693155 0.720789i \(-0.256220\pi\)
0.693155 + 0.720789i \(0.256220\pi\)
\(644\) −44122.7 −0.00419226
\(645\) −158864. −0.0150358
\(646\) 2.95191e6 0.278305
\(647\) −1.26902e7 −1.19181 −0.595904 0.803055i \(-0.703206\pi\)
−0.595904 + 0.803055i \(0.703206\pi\)
\(648\) −4.72387e6 −0.441937
\(649\) −1.21422e6 −0.113158
\(650\) 2.07739e6 0.192857
\(651\) −7.06108e6 −0.653008
\(652\) −2.24276e6 −0.206616
\(653\) −4.48209e6 −0.411337 −0.205669 0.978622i \(-0.565937\pi\)
−0.205669 + 0.978622i \(0.565937\pi\)
\(654\) 9.12086e6 0.833857
\(655\) 2.45368e6 0.223468
\(656\) 3.21223e6 0.291439
\(657\) 8.26316e6 0.746849
\(658\) 3.99889e6 0.360060
\(659\) −1.76267e7 −1.58109 −0.790545 0.612403i \(-0.790203\pi\)
−0.790545 + 0.612403i \(0.790203\pi\)
\(660\) −526917. −0.0470849
\(661\) 1.03733e7 0.923447 0.461724 0.887024i \(-0.347231\pi\)
0.461724 + 0.887024i \(0.347231\pi\)
\(662\) 8.69617e6 0.771229
\(663\) 6.36107e6 0.562013
\(664\) −150911. −0.0132831
\(665\) −144465. −0.0126680
\(666\) 5.53940e6 0.483924
\(667\) 246670. 0.0214685
\(668\) 3.48874e6 0.302501
\(669\) −1.14204e7 −0.986545
\(670\) −1.15997e6 −0.0998298
\(671\) 1.30063e7 1.11518
\(672\) −1.04699e6 −0.0894377
\(673\) 4.76273e6 0.405339 0.202669 0.979247i \(-0.435038\pi\)
0.202669 + 0.979247i \(0.435038\pi\)
\(674\) 3.28598e6 0.278622
\(675\) 7.17148e6 0.605828
\(676\) 456976. 0.0384615
\(677\) 1.68783e7 1.41533 0.707665 0.706548i \(-0.249749\pi\)
0.707665 + 0.706548i \(0.249749\pi\)
\(678\) 3.62750e6 0.303063
\(679\) 1.67270e6 0.139233
\(680\) 910371. 0.0754999
\(681\) −2.52286e7 −2.08462
\(682\) 6.62013e6 0.545012
\(683\) −1.87331e7 −1.53659 −0.768294 0.640097i \(-0.778894\pi\)
−0.768294 + 0.640097i \(0.778894\pi\)
\(684\) −721538. −0.0589684
\(685\) −346941. −0.0282507
\(686\) 6.59280e6 0.534884
\(687\) 2.20726e6 0.178427
\(688\) 295953. 0.0238370
\(689\) −1.57489e6 −0.126387
\(690\) −28269.9 −0.00226048
\(691\) 2.12121e7 1.69000 0.845002 0.534763i \(-0.179599\pi\)
0.845002 + 0.534763i \(0.179599\pi\)
\(692\) −6.15763e6 −0.488819
\(693\) −1.54995e6 −0.122598
\(694\) 7.03590e6 0.554525
\(695\) −2.33345e6 −0.183247
\(696\) 5.85325e6 0.458009
\(697\) −2.47678e7 −1.93110
\(698\) −1.26143e7 −0.980000
\(699\) 2.32497e7 1.79980
\(700\) 2.63641e6 0.203361
\(701\) 2.61831e6 0.201246 0.100623 0.994925i \(-0.467916\pi\)
0.100623 + 0.994925i \(0.467916\pi\)
\(702\) 1.57755e6 0.120820
\(703\) −4.29249e6 −0.327583
\(704\) 981612. 0.0746463
\(705\) 2.56213e6 0.194146
\(706\) −6.05824e6 −0.457440
\(707\) 4.66212e6 0.350780
\(708\) −1.54583e6 −0.115899
\(709\) 1.41825e7 1.05959 0.529794 0.848127i \(-0.322269\pi\)
0.529794 + 0.848127i \(0.322269\pi\)
\(710\) 1.88048e6 0.139998
\(711\) 1.28186e6 0.0950971
\(712\) −5.99168e6 −0.442944
\(713\) 355180. 0.0261653
\(714\) 8.07279e6 0.592622
\(715\) 291867. 0.0213511
\(716\) 7.97236e6 0.581172
\(717\) −3.18112e7 −2.31091
\(718\) 6.75739e6 0.489179
\(719\) 1.39362e6 0.100536 0.0502681 0.998736i \(-0.483992\pi\)
0.0502681 + 0.998736i \(0.483992\pi\)
\(720\) −222523. −0.0159972
\(721\) 2.31158e6 0.165604
\(722\) −9.34528e6 −0.667189
\(723\) 1.61648e7 1.15007
\(724\) 2.43522e6 0.172660
\(725\) −1.47389e7 −1.04141
\(726\) −7.90351e6 −0.556517
\(727\) 5.67972e6 0.398557 0.199279 0.979943i \(-0.436140\pi\)
0.199279 + 0.979943i \(0.436140\pi\)
\(728\) 579945. 0.0405563
\(729\) 1.91054e6 0.133149
\(730\) −1.97473e6 −0.137152
\(731\) −2.28193e6 −0.157946
\(732\) 1.65583e7 1.14219
\(733\) −1.55611e7 −1.06974 −0.534872 0.844933i \(-0.679640\pi\)
−0.534872 + 0.844933i \(0.679640\pi\)
\(734\) −7.48736e6 −0.512966
\(735\) 1.91450e6 0.130718
\(736\) 52665.0 0.00358367
\(737\) 9.64380e6 0.654003
\(738\) 6.05402e6 0.409169
\(739\) 1.54351e7 1.03968 0.519839 0.854264i \(-0.325992\pi\)
0.519839 + 0.854264i \(0.325992\pi\)
\(740\) −1.32381e6 −0.0888681
\(741\) 1.20485e6 0.0806097
\(742\) −1.99869e6 −0.133271
\(743\) −8.72110e6 −0.579561 −0.289781 0.957093i \(-0.593582\pi\)
−0.289781 + 0.957093i \(0.593582\pi\)
\(744\) 8.42811e6 0.558211
\(745\) −2.68759e6 −0.177408
\(746\) 2.51201e6 0.165263
\(747\) −284417. −0.0186490
\(748\) −7.56867e6 −0.494613
\(749\) 9.43514e6 0.614531
\(750\) 3.40689e6 0.221159
\(751\) 1.07940e7 0.698365 0.349183 0.937055i \(-0.386459\pi\)
0.349183 + 0.937055i \(0.386459\pi\)
\(752\) −4.77309e6 −0.307790
\(753\) −2.08132e7 −1.33768
\(754\) −3.24221e6 −0.207688
\(755\) 1.15112e6 0.0734941
\(756\) 2.00206e6 0.127401
\(757\) 1.87309e7 1.18801 0.594005 0.804462i \(-0.297546\pi\)
0.594005 + 0.804462i \(0.297546\pi\)
\(758\) 1.91290e6 0.120926
\(759\) 235031. 0.0148088
\(760\) 172433. 0.0108290
\(761\) −1.41785e7 −0.887498 −0.443749 0.896151i \(-0.646352\pi\)
−0.443749 + 0.896151i \(0.646352\pi\)
\(762\) −8.29676e6 −0.517632
\(763\) −6.41170e6 −0.398714
\(764\) 9.60454e6 0.595310
\(765\) 1.71575e6 0.105999
\(766\) −1.83419e7 −1.12947
\(767\) 856260. 0.0525554
\(768\) 1.24969e6 0.0764540
\(769\) −1.90780e7 −1.16337 −0.581683 0.813416i \(-0.697605\pi\)
−0.581683 + 0.813416i \(0.697605\pi\)
\(770\) 370407. 0.0225140
\(771\) −200424. −0.0121427
\(772\) 5.61287e6 0.338955
\(773\) 1.31787e7 0.793276 0.396638 0.917975i \(-0.370177\pi\)
0.396638 + 0.917975i \(0.370177\pi\)
\(774\) 557776. 0.0334663
\(775\) −2.12226e7 −1.26924
\(776\) −1.99653e6 −0.119021
\(777\) −1.17390e7 −0.697554
\(778\) 1.04854e7 0.621065
\(779\) −4.69126e6 −0.276979
\(780\) 371577. 0.0218682
\(781\) −1.56340e7 −0.917155
\(782\) −406071. −0.0237457
\(783\) −1.11926e7 −0.652418
\(784\) −3.56659e6 −0.207235
\(785\) 3.48886e6 0.202074
\(786\) −2.59706e7 −1.49943
\(787\) −2.47284e7 −1.42318 −0.711589 0.702596i \(-0.752024\pi\)
−0.711589 + 0.702596i \(0.752024\pi\)
\(788\) −5.13832e6 −0.294785
\(789\) 3.17210e7 1.81407
\(790\) −306340. −0.0174637
\(791\) −2.55002e6 −0.144911
\(792\) 1.85002e6 0.104800
\(793\) −9.17191e6 −0.517937
\(794\) 3.84461e6 0.216422
\(795\) −1.28058e6 −0.0718603
\(796\) 8.98266e6 0.502484
\(797\) −2.11191e7 −1.17769 −0.588843 0.808248i \(-0.700416\pi\)
−0.588843 + 0.808248i \(0.700416\pi\)
\(798\) 1.52907e6 0.0850001
\(799\) 3.68026e7 2.03945
\(800\) −3.14682e6 −0.173839
\(801\) −1.12924e7 −0.621876
\(802\) −1.60223e7 −0.879610
\(803\) 1.64176e7 0.898505
\(804\) 1.22776e7 0.669841
\(805\) 19872.9 0.00108087
\(806\) −4.66846e6 −0.253126
\(807\) −2.34732e6 −0.126878
\(808\) −5.56471e6 −0.299857
\(809\) 1.62945e7 0.875326 0.437663 0.899139i \(-0.355806\pi\)
0.437663 + 0.899139i \(0.355806\pi\)
\(810\) 2.12763e6 0.113942
\(811\) 2.00401e7 1.06991 0.534954 0.844881i \(-0.320329\pi\)
0.534954 + 0.844881i \(0.320329\pi\)
\(812\) −4.11467e6 −0.219000
\(813\) 4.09896e7 2.17494
\(814\) 1.10059e7 0.582191
\(815\) 1.01014e6 0.0532706
\(816\) −9.63570e6 −0.506591
\(817\) −432221. −0.0226543
\(818\) −1.25012e7 −0.653234
\(819\) 1.09301e6 0.0569395
\(820\) −1.44679e6 −0.0751400
\(821\) 3.51296e7 1.81893 0.909463 0.415784i \(-0.136493\pi\)
0.909463 + 0.415784i \(0.136493\pi\)
\(822\) 3.67215e6 0.189558
\(823\) −2.51324e7 −1.29341 −0.646703 0.762742i \(-0.723853\pi\)
−0.646703 + 0.762742i \(0.723853\pi\)
\(824\) −2.75911e6 −0.141563
\(825\) −1.40435e7 −0.718357
\(826\) 1.08667e6 0.0554178
\(827\) −1.66576e7 −0.846934 −0.423467 0.905911i \(-0.639187\pi\)
−0.423467 + 0.905911i \(0.639187\pi\)
\(828\) 99256.4 0.00503133
\(829\) −1.46404e7 −0.739887 −0.369944 0.929054i \(-0.620623\pi\)
−0.369944 + 0.929054i \(0.620623\pi\)
\(830\) 67970.2 0.00342471
\(831\) 1.56094e7 0.784121
\(832\) −692224. −0.0346688
\(833\) 2.75000e7 1.37316
\(834\) 2.46981e7 1.22956
\(835\) −1.57133e6 −0.0779921
\(836\) −1.43358e6 −0.0709425
\(837\) −1.61162e7 −0.795152
\(838\) −1.33951e7 −0.658924
\(839\) 2.79895e7 1.37275 0.686374 0.727249i \(-0.259201\pi\)
0.686374 + 0.727249i \(0.259201\pi\)
\(840\) 471566. 0.0230592
\(841\) 2.49204e6 0.121497
\(842\) −1.20533e7 −0.585902
\(843\) 2.63155e7 1.27539
\(844\) −1.20160e7 −0.580637
\(845\) −205822. −0.00991632
\(846\) −8.99572e6 −0.432125
\(847\) 5.55593e6 0.266102
\(848\) 2.38564e6 0.113924
\(849\) 7.54787e6 0.359381
\(850\) 2.42634e7 1.15187
\(851\) 590484. 0.0279502
\(852\) −1.99037e7 −0.939366
\(853\) −2.22248e7 −1.04584 −0.522919 0.852382i \(-0.675157\pi\)
−0.522919 + 0.852382i \(0.675157\pi\)
\(854\) −1.16400e7 −0.546146
\(855\) 324981. 0.0152035
\(856\) −1.12618e7 −0.525319
\(857\) 7.83995e6 0.364637 0.182319 0.983239i \(-0.441640\pi\)
0.182319 + 0.983239i \(0.441640\pi\)
\(858\) −3.08923e6 −0.143262
\(859\) −3.08215e7 −1.42518 −0.712592 0.701579i \(-0.752479\pi\)
−0.712592 + 0.701579i \(0.752479\pi\)
\(860\) −133298. −0.00614576
\(861\) −1.28295e7 −0.589798
\(862\) 1.34090e7 0.614649
\(863\) −4.53439e6 −0.207249 −0.103624 0.994617i \(-0.533044\pi\)
−0.103624 + 0.994617i \(0.533044\pi\)
\(864\) −2.38966e6 −0.108906
\(865\) 2.77340e6 0.126029
\(866\) 6.48753e6 0.293957
\(867\) 4.72206e7 2.13346
\(868\) −5.92472e6 −0.266912
\(869\) 2.54686e6 0.114408
\(870\) −2.63631e6 −0.118086
\(871\) −6.80073e6 −0.303746
\(872\) 7.65301e6 0.340833
\(873\) −3.76282e6 −0.167100
\(874\) −76913.9 −0.00340586
\(875\) −2.39495e6 −0.105749
\(876\) 2.09013e7 0.920265
\(877\) 3.31312e7 1.45458 0.727292 0.686328i \(-0.240779\pi\)
0.727292 + 0.686328i \(0.240779\pi\)
\(878\) 2.99579e7 1.31152
\(879\) 7.29933e6 0.318648
\(880\) −442118. −0.0192456
\(881\) 6.36611e6 0.276334 0.138167 0.990409i \(-0.455879\pi\)
0.138167 + 0.990409i \(0.455879\pi\)
\(882\) −6.72186e6 −0.290950
\(883\) −3.09630e7 −1.33641 −0.668207 0.743975i \(-0.732938\pi\)
−0.668207 + 0.743975i \(0.732938\pi\)
\(884\) 5.33736e6 0.229718
\(885\) 696243. 0.0298815
\(886\) 7.60626e6 0.325527
\(887\) −4.17692e7 −1.78257 −0.891287 0.453440i \(-0.850197\pi\)
−0.891287 + 0.453440i \(0.850197\pi\)
\(888\) 1.40117e7 0.596290
\(889\) 5.83238e6 0.247509
\(890\) 2.69866e6 0.114202
\(891\) −1.76888e7 −0.746455
\(892\) −9.58250e6 −0.403243
\(893\) 6.97079e6 0.292519
\(894\) 2.84465e7 1.19038
\(895\) −3.59075e6 −0.149840
\(896\) −878497. −0.0365570
\(897\) −165742. −0.00687782
\(898\) 6.50321e6 0.269114
\(899\) 3.31223e7 1.36685
\(900\) −5.93074e6 −0.244063
\(901\) −1.83944e7 −0.754871
\(902\) 1.20284e7 0.492255
\(903\) −1.18203e6 −0.0482401
\(904\) 3.04371e6 0.123875
\(905\) −1.09682e6 −0.0445159
\(906\) −1.21838e7 −0.493133
\(907\) −4.51182e7 −1.82110 −0.910550 0.413399i \(-0.864342\pi\)
−0.910550 + 0.413399i \(0.864342\pi\)
\(908\) −2.11685e7 −0.852071
\(909\) −1.04877e7 −0.420988
\(910\) −261208. −0.0104564
\(911\) 2.93224e6 0.117059 0.0585293 0.998286i \(-0.481359\pi\)
0.0585293 + 0.998286i \(0.481359\pi\)
\(912\) −1.82510e6 −0.0726606
\(913\) −565092. −0.0224359
\(914\) 6.01293e6 0.238079
\(915\) −7.45788e6 −0.294485
\(916\) 1.85203e6 0.0729307
\(917\) 1.82566e7 0.716962
\(918\) 1.84254e7 0.721622
\(919\) 1.06534e7 0.416101 0.208051 0.978118i \(-0.433288\pi\)
0.208051 + 0.978118i \(0.433288\pi\)
\(920\) −23720.3 −0.000923956 0
\(921\) −5.64391e7 −2.19246
\(922\) 2.19818e6 0.0851602
\(923\) 1.10250e7 0.425964
\(924\) −3.92052e6 −0.151065
\(925\) −3.52824e7 −1.35583
\(926\) −1.33819e7 −0.512850
\(927\) −5.20003e6 −0.198750
\(928\) 4.91127e6 0.187208
\(929\) −1.93436e7 −0.735355 −0.367677 0.929953i \(-0.619847\pi\)
−0.367677 + 0.929953i \(0.619847\pi\)
\(930\) −3.79603e6 −0.143920
\(931\) 5.20878e6 0.196952
\(932\) 1.95081e7 0.735655
\(933\) −1.02380e7 −0.385046
\(934\) 8.81947e6 0.330808
\(935\) 3.40893e6 0.127523
\(936\) −1.30462e6 −0.0486736
\(937\) −5.62445e6 −0.209282 −0.104641 0.994510i \(-0.533369\pi\)
−0.104641 + 0.994510i \(0.533369\pi\)
\(938\) −8.63076e6 −0.320289
\(939\) −6.35566e7 −2.35232
\(940\) 2.14980e6 0.0793557
\(941\) −2.18961e7 −0.806106 −0.403053 0.915177i \(-0.632051\pi\)
−0.403053 + 0.915177i \(0.632051\pi\)
\(942\) −3.69274e7 −1.35588
\(943\) 645341. 0.0236325
\(944\) −1.29706e6 −0.0473728
\(945\) −901729. −0.0328471
\(946\) 1.10821e6 0.0402620
\(947\) 931486. 0.0337522 0.0168761 0.999858i \(-0.494628\pi\)
0.0168761 + 0.999858i \(0.494628\pi\)
\(948\) 3.24241e6 0.117178
\(949\) −1.15775e7 −0.417302
\(950\) 4.59573e6 0.165214
\(951\) 2.86223e7 1.02625
\(952\) 6.77361e6 0.242230
\(953\) 4.06914e7 1.45135 0.725673 0.688040i \(-0.241529\pi\)
0.725673 + 0.688040i \(0.241529\pi\)
\(954\) 4.49616e6 0.159945
\(955\) −4.32589e6 −0.153485
\(956\) −2.66917e7 −0.944565
\(957\) 2.19178e7 0.773601
\(958\) −2.62206e6 −0.0923059
\(959\) −2.58141e6 −0.0906382
\(960\) −562862. −0.0197117
\(961\) 1.90638e7 0.665887
\(962\) −7.76128e6 −0.270393
\(963\) −2.12248e7 −0.737528
\(964\) 1.35634e7 0.470083
\(965\) −2.52804e6 −0.0873907
\(966\) −210342. −0.00725242
\(967\) 1.43608e7 0.493869 0.246934 0.969032i \(-0.420577\pi\)
0.246934 + 0.969032i \(0.420577\pi\)
\(968\) −6.63157e6 −0.227472
\(969\) 1.40723e7 0.481456
\(970\) 899239. 0.0306864
\(971\) 4.38037e6 0.149095 0.0745475 0.997217i \(-0.476249\pi\)
0.0745475 + 0.997217i \(0.476249\pi\)
\(972\) −1.34464e7 −0.456499
\(973\) −1.73621e7 −0.587921
\(974\) 6.80562e6 0.229864
\(975\) 9.90335e6 0.333634
\(976\) 1.38935e7 0.466862
\(977\) 2.87093e7 0.962247 0.481123 0.876653i \(-0.340229\pi\)
0.481123 + 0.876653i \(0.340229\pi\)
\(978\) −1.06917e7 −0.357436
\(979\) −2.24362e7 −0.748155
\(980\) 1.60639e6 0.0534301
\(981\) 1.44234e7 0.478516
\(982\) 6.18257e6 0.204593
\(983\) 5.36798e7 1.77185 0.885925 0.463829i \(-0.153525\pi\)
0.885925 + 0.463829i \(0.153525\pi\)
\(984\) 1.53134e7 0.504177
\(985\) 2.31430e6 0.0760028
\(986\) −3.78681e7 −1.24046
\(987\) 1.90635e7 0.622888
\(988\) 1.01095e6 0.0329486
\(989\) 59457.3 0.00193292
\(990\) −833249. −0.0270201
\(991\) 2.18434e7 0.706539 0.353269 0.935522i \(-0.385070\pi\)
0.353269 + 0.935522i \(0.385070\pi\)
\(992\) 7.07175e6 0.228164
\(993\) 4.14564e7 1.33419
\(994\) 1.39917e7 0.449164
\(995\) −4.04579e6 −0.129553
\(996\) −719421. −0.0229792
\(997\) 4.14924e7 1.32200 0.660999 0.750387i \(-0.270133\pi\)
0.660999 + 0.750387i \(0.270133\pi\)
\(998\) 2.22975e7 0.708646
\(999\) −2.67931e7 −0.849394
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.6.a.c.1.2 2
3.2 odd 2 234.6.a.h.1.2 2
4.3 odd 2 208.6.a.g.1.1 2
5.2 odd 4 650.6.b.h.599.3 4
5.3 odd 4 650.6.b.h.599.2 4
5.4 even 2 650.6.a.b.1.1 2
8.3 odd 2 832.6.a.m.1.2 2
8.5 even 2 832.6.a.k.1.1 2
13.5 odd 4 338.6.b.b.337.2 4
13.8 odd 4 338.6.b.b.337.4 4
13.12 even 2 338.6.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.6.a.c.1.2 2 1.1 even 1 trivial
208.6.a.g.1.1 2 4.3 odd 2
234.6.a.h.1.2 2 3.2 odd 2
338.6.a.f.1.2 2 13.12 even 2
338.6.b.b.337.2 4 13.5 odd 4
338.6.b.b.337.4 4 13.8 odd 4
650.6.a.b.1.1 2 5.4 even 2
650.6.b.h.599.2 4 5.3 odd 4
650.6.b.h.599.3 4 5.2 odd 4
832.6.a.k.1.1 2 8.5 even 2
832.6.a.m.1.2 2 8.3 odd 2