Properties

Label 26.6.a.c.1.1
Level $26$
Weight $6$
Character 26.1
Self dual yes
Analytic conductor $4.170$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,6,Mod(1,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.16997931514\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{849}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 212 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(15.0688\) of defining polynomial
Character \(\chi\) \(=\) 26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -10.0688 q^{3} +16.0000 q^{4} +80.2064 q^{5} -40.2752 q^{6} +208.619 q^{7} +64.0000 q^{8} -141.619 q^{9} +320.826 q^{10} -459.651 q^{11} -161.101 q^{12} -169.000 q^{13} +834.477 q^{14} -807.582 q^{15} +256.000 q^{16} +1784.88 q^{17} -566.477 q^{18} -2122.13 q^{19} +1283.30 q^{20} -2100.55 q^{21} -1838.61 q^{22} -3095.43 q^{23} -644.403 q^{24} +3308.07 q^{25} -676.000 q^{26} +3872.65 q^{27} +3337.91 q^{28} -2896.16 q^{29} -3230.33 q^{30} -4108.01 q^{31} +1024.00 q^{32} +4628.14 q^{33} +7139.50 q^{34} +16732.6 q^{35} -2265.91 q^{36} +6323.82 q^{37} -8488.51 q^{38} +1701.63 q^{39} +5133.21 q^{40} -913.787 q^{41} -8402.18 q^{42} -5225.07 q^{43} -7354.42 q^{44} -11358.8 q^{45} -12381.7 q^{46} -6844.14 q^{47} -2577.61 q^{48} +26715.0 q^{49} +13232.3 q^{50} -17971.6 q^{51} -2704.00 q^{52} -13932.9 q^{53} +15490.6 q^{54} -36867.0 q^{55} +13351.6 q^{56} +21367.3 q^{57} -11584.7 q^{58} -18353.4 q^{59} -12921.3 q^{60} +42558.3 q^{61} -16432.0 q^{62} -29544.5 q^{63} +4096.00 q^{64} -13554.9 q^{65} +18512.6 q^{66} +32199.0 q^{67} +28558.0 q^{68} +31167.3 q^{69} +66930.4 q^{70} +28557.5 q^{71} -9063.63 q^{72} -21354.2 q^{73} +25295.3 q^{74} -33308.3 q^{75} -33954.1 q^{76} -95892.1 q^{77} +6806.51 q^{78} +41396.7 q^{79} +20532.8 q^{80} -4579.53 q^{81} -3655.15 q^{82} -35400.0 q^{83} -33608.7 q^{84} +143158. q^{85} -20900.3 q^{86} +29160.9 q^{87} -29417.7 q^{88} -11452.0 q^{89} -45435.1 q^{90} -35256.6 q^{91} -49526.9 q^{92} +41362.7 q^{93} -27376.5 q^{94} -170208. q^{95} -10310.5 q^{96} +135588. q^{97} +106860. q^{98} +65095.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 9 q^{3} + 32 q^{4} + 73 q^{5} + 36 q^{6} + 155 q^{7} + 128 q^{8} - 21 q^{9} + 292 q^{10} - 220 q^{11} + 144 q^{12} - 338 q^{13} + 620 q^{14} - 945 q^{15} + 512 q^{16} - 189 q^{17} - 84 q^{18}+ \cdots + 94002 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −10.0688 −0.645914 −0.322957 0.946414i \(-0.604677\pi\)
−0.322957 + 0.946414i \(0.604677\pi\)
\(4\) 16.0000 0.500000
\(5\) 80.2064 1.43478 0.717388 0.696674i \(-0.245338\pi\)
0.717388 + 0.696674i \(0.245338\pi\)
\(6\) −40.2752 −0.456730
\(7\) 208.619 1.60920 0.804599 0.593819i \(-0.202381\pi\)
0.804599 + 0.593819i \(0.202381\pi\)
\(8\) 64.0000 0.353553
\(9\) −141.619 −0.582795
\(10\) 320.826 1.01454
\(11\) −459.651 −1.14537 −0.572686 0.819775i \(-0.694099\pi\)
−0.572686 + 0.819775i \(0.694099\pi\)
\(12\) −161.101 −0.322957
\(13\) −169.000 −0.277350
\(14\) 834.477 1.13787
\(15\) −807.582 −0.926742
\(16\) 256.000 0.250000
\(17\) 1784.88 1.49791 0.748955 0.662621i \(-0.230556\pi\)
0.748955 + 0.662621i \(0.230556\pi\)
\(18\) −566.477 −0.412098
\(19\) −2122.13 −1.34861 −0.674307 0.738451i \(-0.735558\pi\)
−0.674307 + 0.738451i \(0.735558\pi\)
\(20\) 1283.30 0.717388
\(21\) −2100.55 −1.03940
\(22\) −1838.61 −0.809901
\(23\) −3095.43 −1.22012 −0.610059 0.792356i \(-0.708854\pi\)
−0.610059 + 0.792356i \(0.708854\pi\)
\(24\) −644.403 −0.228365
\(25\) 3308.07 1.05858
\(26\) −676.000 −0.196116
\(27\) 3872.65 1.02235
\(28\) 3337.91 0.804599
\(29\) −2896.16 −0.639482 −0.319741 0.947505i \(-0.603596\pi\)
−0.319741 + 0.947505i \(0.603596\pi\)
\(30\) −3230.33 −0.655305
\(31\) −4108.01 −0.767763 −0.383881 0.923382i \(-0.625413\pi\)
−0.383881 + 0.923382i \(0.625413\pi\)
\(32\) 1024.00 0.176777
\(33\) 4628.14 0.739812
\(34\) 7139.50 1.05918
\(35\) 16732.6 2.30884
\(36\) −2265.91 −0.291398
\(37\) 6323.82 0.759408 0.379704 0.925108i \(-0.376026\pi\)
0.379704 + 0.925108i \(0.376026\pi\)
\(38\) −8488.51 −0.953614
\(39\) 1701.63 0.179144
\(40\) 5133.21 0.507270
\(41\) −913.787 −0.0848956 −0.0424478 0.999099i \(-0.513516\pi\)
−0.0424478 + 0.999099i \(0.513516\pi\)
\(42\) −8402.18 −0.734969
\(43\) −5225.07 −0.430944 −0.215472 0.976510i \(-0.569129\pi\)
−0.215472 + 0.976510i \(0.569129\pi\)
\(44\) −7354.42 −0.572686
\(45\) −11358.8 −0.836180
\(46\) −12381.7 −0.862753
\(47\) −6844.14 −0.451933 −0.225966 0.974135i \(-0.572554\pi\)
−0.225966 + 0.974135i \(0.572554\pi\)
\(48\) −2577.61 −0.161478
\(49\) 26715.0 1.58952
\(50\) 13232.3 0.748530
\(51\) −17971.6 −0.967521
\(52\) −2704.00 −0.138675
\(53\) −13932.9 −0.681321 −0.340661 0.940186i \(-0.610651\pi\)
−0.340661 + 0.940186i \(0.610651\pi\)
\(54\) 15490.6 0.722910
\(55\) −36867.0 −1.64335
\(56\) 13351.6 0.568937
\(57\) 21367.3 0.871088
\(58\) −11584.7 −0.452182
\(59\) −18353.4 −0.686414 −0.343207 0.939260i \(-0.611513\pi\)
−0.343207 + 0.939260i \(0.611513\pi\)
\(60\) −12921.3 −0.463371
\(61\) 42558.3 1.46440 0.732201 0.681089i \(-0.238493\pi\)
0.732201 + 0.681089i \(0.238493\pi\)
\(62\) −16432.0 −0.542890
\(63\) −29544.5 −0.937832
\(64\) 4096.00 0.125000
\(65\) −13554.9 −0.397935
\(66\) 18512.6 0.523126
\(67\) 32199.0 0.876305 0.438153 0.898901i \(-0.355633\pi\)
0.438153 + 0.898901i \(0.355633\pi\)
\(68\) 28558.0 0.748955
\(69\) 31167.3 0.788091
\(70\) 66930.4 1.63259
\(71\) 28557.5 0.672317 0.336158 0.941805i \(-0.390872\pi\)
0.336158 + 0.941805i \(0.390872\pi\)
\(72\) −9063.63 −0.206049
\(73\) −21354.2 −0.469003 −0.234502 0.972116i \(-0.575346\pi\)
−0.234502 + 0.972116i \(0.575346\pi\)
\(74\) 25295.3 0.536983
\(75\) −33308.3 −0.683753
\(76\) −33954.1 −0.674307
\(77\) −95892.1 −1.84313
\(78\) 6806.51 0.126674
\(79\) 41396.7 0.746273 0.373136 0.927777i \(-0.378282\pi\)
0.373136 + 0.927777i \(0.378282\pi\)
\(80\) 20532.8 0.358694
\(81\) −4579.53 −0.0775547
\(82\) −3655.15 −0.0600303
\(83\) −35400.0 −0.564038 −0.282019 0.959409i \(-0.591004\pi\)
−0.282019 + 0.959409i \(0.591004\pi\)
\(84\) −33608.7 −0.519701
\(85\) 143158. 2.14916
\(86\) −20900.3 −0.304723
\(87\) 29160.9 0.413050
\(88\) −29417.7 −0.404950
\(89\) −11452.0 −0.153252 −0.0766259 0.997060i \(-0.524415\pi\)
−0.0766259 + 0.997060i \(0.524415\pi\)
\(90\) −45435.1 −0.591269
\(91\) −35256.6 −0.446311
\(92\) −49526.9 −0.610059
\(93\) 41362.7 0.495909
\(94\) −27376.5 −0.319565
\(95\) −170208. −1.93496
\(96\) −10310.5 −0.114183
\(97\) 135588. 1.46316 0.731579 0.681756i \(-0.238784\pi\)
0.731579 + 0.681756i \(0.238784\pi\)
\(98\) 106860. 1.12396
\(99\) 65095.5 0.667518
\(100\) 52929.1 0.529291
\(101\) −193417. −1.88665 −0.943327 0.331866i \(-0.892322\pi\)
−0.943327 + 0.331866i \(0.892322\pi\)
\(102\) −71886.2 −0.684141
\(103\) 119127. 1.10641 0.553207 0.833044i \(-0.313404\pi\)
0.553207 + 0.833044i \(0.313404\pi\)
\(104\) −10816.0 −0.0980581
\(105\) −168477. −1.49131
\(106\) −55731.6 −0.481767
\(107\) −56734.5 −0.479057 −0.239529 0.970889i \(-0.576993\pi\)
−0.239529 + 0.970889i \(0.576993\pi\)
\(108\) 61962.5 0.511175
\(109\) 120715. 0.973182 0.486591 0.873630i \(-0.338240\pi\)
0.486591 + 0.873630i \(0.338240\pi\)
\(110\) −147468. −1.16203
\(111\) −63673.3 −0.490512
\(112\) 53406.5 0.402299
\(113\) 266090. 1.96034 0.980172 0.198146i \(-0.0634922\pi\)
0.980172 + 0.198146i \(0.0634922\pi\)
\(114\) 85469.2 0.615953
\(115\) −248273. −1.75059
\(116\) −46338.6 −0.319741
\(117\) 23933.6 0.161638
\(118\) −73413.5 −0.485368
\(119\) 372359. 2.41043
\(120\) −51685.3 −0.327653
\(121\) 50228.3 0.311878
\(122\) 170233. 1.03549
\(123\) 9200.74 0.0548353
\(124\) −65728.1 −0.383881
\(125\) 14683.2 0.0840516
\(126\) −118178. −0.663148
\(127\) −48634.0 −0.267566 −0.133783 0.991011i \(-0.542712\pi\)
−0.133783 + 0.991011i \(0.542712\pi\)
\(128\) 16384.0 0.0883883
\(129\) 52610.2 0.278353
\(130\) −54219.5 −0.281383
\(131\) 214673. 1.09295 0.546473 0.837477i \(-0.315970\pi\)
0.546473 + 0.837477i \(0.315970\pi\)
\(132\) 74050.2 0.369906
\(133\) −442717. −2.17019
\(134\) 128796. 0.619642
\(135\) 310612. 1.46684
\(136\) 114232. 0.529591
\(137\) −124409. −0.566307 −0.283154 0.959075i \(-0.591381\pi\)
−0.283154 + 0.959075i \(0.591381\pi\)
\(138\) 124669. 0.557264
\(139\) −90271.7 −0.396292 −0.198146 0.980173i \(-0.563492\pi\)
−0.198146 + 0.980173i \(0.563492\pi\)
\(140\) 267722. 1.15442
\(141\) 68912.2 0.291910
\(142\) 114230. 0.475400
\(143\) 77681.1 0.317669
\(144\) −36254.5 −0.145699
\(145\) −232291. −0.917513
\(146\) −85416.7 −0.331635
\(147\) −268988. −1.02669
\(148\) 101181. 0.379704
\(149\) −288945. −1.06623 −0.533113 0.846044i \(-0.678978\pi\)
−0.533113 + 0.846044i \(0.678978\pi\)
\(150\) −133233. −0.483486
\(151\) 180912. 0.645693 0.322846 0.946451i \(-0.395360\pi\)
0.322846 + 0.946451i \(0.395360\pi\)
\(152\) −135816. −0.476807
\(153\) −252773. −0.872974
\(154\) −383568. −1.30329
\(155\) −329489. −1.10157
\(156\) 27226.0 0.0895722
\(157\) −445322. −1.44187 −0.720934 0.693004i \(-0.756287\pi\)
−0.720934 + 0.693004i \(0.756287\pi\)
\(158\) 165587. 0.527694
\(159\) 140288. 0.440075
\(160\) 82131.4 0.253635
\(161\) −645766. −1.96341
\(162\) −18318.1 −0.0548394
\(163\) 427486. 1.26024 0.630120 0.776498i \(-0.283006\pi\)
0.630120 + 0.776498i \(0.283006\pi\)
\(164\) −14620.6 −0.0424478
\(165\) 371206. 1.06146
\(166\) −141600. −0.398835
\(167\) −33528.0 −0.0930287 −0.0465144 0.998918i \(-0.514811\pi\)
−0.0465144 + 0.998918i \(0.514811\pi\)
\(168\) −134435. −0.367484
\(169\) 28561.0 0.0769231
\(170\) 572634. 1.51969
\(171\) 300534. 0.785966
\(172\) −83601.1 −0.215472
\(173\) 436654. 1.10923 0.554615 0.832107i \(-0.312865\pi\)
0.554615 + 0.832107i \(0.312865\pi\)
\(174\) 116644. 0.292071
\(175\) 690127. 1.70347
\(176\) −117671. −0.286343
\(177\) 184796. 0.443364
\(178\) −45807.9 −0.108365
\(179\) −70697.5 −0.164919 −0.0824597 0.996594i \(-0.526278\pi\)
−0.0824597 + 0.996594i \(0.526278\pi\)
\(180\) −181740. −0.418090
\(181\) −22799.2 −0.0517278 −0.0258639 0.999665i \(-0.508234\pi\)
−0.0258639 + 0.999665i \(0.508234\pi\)
\(182\) −141027. −0.315589
\(183\) −428512. −0.945877
\(184\) −198108. −0.431377
\(185\) 507211. 1.08958
\(186\) 165451. 0.350660
\(187\) −820420. −1.71566
\(188\) −109506. −0.225966
\(189\) 807910. 1.64516
\(190\) −680833. −1.36822
\(191\) 570738. 1.13202 0.566009 0.824399i \(-0.308487\pi\)
0.566009 + 0.824399i \(0.308487\pi\)
\(192\) −41241.8 −0.0807392
\(193\) 747134. 1.44379 0.721897 0.692001i \(-0.243270\pi\)
0.721897 + 0.692001i \(0.243270\pi\)
\(194\) 542351. 1.03461
\(195\) 136481. 0.257032
\(196\) 427440. 0.794758
\(197\) −608996. −1.11802 −0.559009 0.829162i \(-0.688818\pi\)
−0.559009 + 0.829162i \(0.688818\pi\)
\(198\) 260382. 0.472006
\(199\) −610090. −1.09210 −0.546049 0.837753i \(-0.683869\pi\)
−0.546049 + 0.837753i \(0.683869\pi\)
\(200\) 211716. 0.374265
\(201\) −324205. −0.566018
\(202\) −773670. −1.33407
\(203\) −604195. −1.02905
\(204\) −287545. −0.483760
\(205\) −73291.5 −0.121806
\(206\) 476508. 0.782353
\(207\) 438372. 0.711078
\(208\) −43264.0 −0.0693375
\(209\) 975439. 1.54467
\(210\) −673909. −1.05452
\(211\) 839125. 1.29754 0.648769 0.760985i \(-0.275284\pi\)
0.648769 + 0.760985i \(0.275284\pi\)
\(212\) −222926. −0.340661
\(213\) −287540. −0.434259
\(214\) −226938. −0.338745
\(215\) −419084. −0.618308
\(216\) 247850. 0.361455
\(217\) −857009. −1.23548
\(218\) 482859. 0.688143
\(219\) 215011. 0.302936
\(220\) −589872. −0.821676
\(221\) −301644. −0.415445
\(222\) −254693. −0.346845
\(223\) −255461. −0.344003 −0.172002 0.985097i \(-0.555023\pi\)
−0.172002 + 0.985097i \(0.555023\pi\)
\(224\) 213626. 0.284469
\(225\) −468486. −0.616936
\(226\) 1.06436e6 1.38617
\(227\) −338589. −0.436123 −0.218061 0.975935i \(-0.569973\pi\)
−0.218061 + 0.975935i \(0.569973\pi\)
\(228\) 341877. 0.435544
\(229\) 91538.8 0.115350 0.0576749 0.998335i \(-0.481631\pi\)
0.0576749 + 0.998335i \(0.481631\pi\)
\(230\) −993093. −1.23786
\(231\) 965518. 1.19050
\(232\) −185354. −0.226091
\(233\) −817902. −0.986987 −0.493494 0.869749i \(-0.664280\pi\)
−0.493494 + 0.869749i \(0.664280\pi\)
\(234\) 95734.6 0.114296
\(235\) −548943. −0.648422
\(236\) −293654. −0.343207
\(237\) −416815. −0.482028
\(238\) 1.48944e6 1.70443
\(239\) −13071.7 −0.0148026 −0.00740128 0.999973i \(-0.502356\pi\)
−0.00740128 + 0.999973i \(0.502356\pi\)
\(240\) −206741. −0.231685
\(241\) −1.35299e6 −1.50056 −0.750280 0.661120i \(-0.770081\pi\)
−0.750280 + 0.661120i \(0.770081\pi\)
\(242\) 200913. 0.220531
\(243\) −894945. −0.972256
\(244\) 680933. 0.732201
\(245\) 2.14271e6 2.28060
\(246\) 36802.9 0.0387744
\(247\) 358640. 0.374038
\(248\) −262912. −0.271445
\(249\) 356436. 0.364320
\(250\) 58732.8 0.0594334
\(251\) −946373. −0.948153 −0.474076 0.880484i \(-0.657218\pi\)
−0.474076 + 0.880484i \(0.657218\pi\)
\(252\) −472712. −0.468916
\(253\) 1.42282e6 1.39749
\(254\) −194536. −0.189198
\(255\) −1.44143e6 −1.38818
\(256\) 65536.0 0.0625000
\(257\) 188354. 0.177886 0.0889429 0.996037i \(-0.471651\pi\)
0.0889429 + 0.996037i \(0.471651\pi\)
\(258\) 210441. 0.196825
\(259\) 1.31927e6 1.22204
\(260\) −216878. −0.198968
\(261\) 410152. 0.372687
\(262\) 858692. 0.772830
\(263\) −196644. −0.175304 −0.0876521 0.996151i \(-0.527936\pi\)
−0.0876521 + 0.996151i \(0.527936\pi\)
\(264\) 296201. 0.261563
\(265\) −1.11751e6 −0.977543
\(266\) −1.77087e6 −1.53455
\(267\) 115308. 0.0989875
\(268\) 515184. 0.438153
\(269\) 543163. 0.457667 0.228834 0.973466i \(-0.426509\pi\)
0.228834 + 0.973466i \(0.426509\pi\)
\(270\) 1.24245e6 1.03721
\(271\) 1.83549e6 1.51820 0.759100 0.650974i \(-0.225639\pi\)
0.759100 + 0.650974i \(0.225639\pi\)
\(272\) 456928. 0.374477
\(273\) 354992. 0.288278
\(274\) −497638. −0.400440
\(275\) −1.52056e6 −1.21247
\(276\) 498676. 0.394045
\(277\) −518660. −0.406147 −0.203073 0.979164i \(-0.565093\pi\)
−0.203073 + 0.979164i \(0.565093\pi\)
\(278\) −361087. −0.280220
\(279\) 581773. 0.447448
\(280\) 1.07089e6 0.816297
\(281\) 229325. 0.173255 0.0866274 0.996241i \(-0.472391\pi\)
0.0866274 + 0.996241i \(0.472391\pi\)
\(282\) 275649. 0.206411
\(283\) −1.67201e6 −1.24101 −0.620503 0.784204i \(-0.713072\pi\)
−0.620503 + 0.784204i \(0.713072\pi\)
\(284\) 456920. 0.336158
\(285\) 1.71379e6 1.24982
\(286\) 310724. 0.224626
\(287\) −190633. −0.136614
\(288\) −145018. −0.103025
\(289\) 1.76592e6 1.24373
\(290\) −929164. −0.648780
\(291\) −1.36521e6 −0.945074
\(292\) −341667. −0.234502
\(293\) −699644. −0.476111 −0.238055 0.971252i \(-0.576510\pi\)
−0.238055 + 0.971252i \(0.576510\pi\)
\(294\) −1.07595e6 −0.725979
\(295\) −1.47206e6 −0.984850
\(296\) 404725. 0.268491
\(297\) −1.78007e6 −1.17097
\(298\) −1.15578e6 −0.753936
\(299\) 523128. 0.338400
\(300\) −532932. −0.341876
\(301\) −1.09005e6 −0.693474
\(302\) 723649. 0.456574
\(303\) 1.94748e6 1.21862
\(304\) −543265. −0.337153
\(305\) 3.41345e6 2.10109
\(306\) −1.01109e6 −0.617286
\(307\) 2.65074e6 1.60517 0.802586 0.596537i \(-0.203457\pi\)
0.802586 + 0.596537i \(0.203457\pi\)
\(308\) −1.53427e6 −0.921565
\(309\) −1.19947e6 −0.714648
\(310\) −1.31795e6 −0.778926
\(311\) 582158. 0.341303 0.170652 0.985331i \(-0.445413\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(312\) 108904. 0.0633371
\(313\) 2.82898e6 1.63218 0.816091 0.577923i \(-0.196137\pi\)
0.816091 + 0.577923i \(0.196137\pi\)
\(314\) −1.78129e6 −1.01955
\(315\) −2.36966e6 −1.34558
\(316\) 662346. 0.373136
\(317\) −1.48118e6 −0.827863 −0.413931 0.910308i \(-0.635845\pi\)
−0.413931 + 0.910308i \(0.635845\pi\)
\(318\) 561151. 0.311180
\(319\) 1.33123e6 0.732445
\(320\) 328525. 0.179347
\(321\) 571248. 0.309430
\(322\) −2.58307e6 −1.38834
\(323\) −3.78773e6 −2.02010
\(324\) −73272.4 −0.0387773
\(325\) −559063. −0.293598
\(326\) 1.70995e6 0.891124
\(327\) −1.21545e6 −0.628592
\(328\) −58482.3 −0.0300151
\(329\) −1.42782e6 −0.727249
\(330\) 1.48483e6 0.750569
\(331\) −2.43838e6 −1.22330 −0.611648 0.791130i \(-0.709493\pi\)
−0.611648 + 0.791130i \(0.709493\pi\)
\(332\) −566400. −0.282019
\(333\) −895575. −0.442579
\(334\) −134112. −0.0657812
\(335\) 2.58257e6 1.25730
\(336\) −537740. −0.259851
\(337\) −898353. −0.430896 −0.215448 0.976515i \(-0.569121\pi\)
−0.215448 + 0.976515i \(0.569121\pi\)
\(338\) 114244. 0.0543928
\(339\) −2.67921e6 −1.26621
\(340\) 2.29054e6 1.07458
\(341\) 1.88825e6 0.879374
\(342\) 1.20214e6 0.555762
\(343\) 2.06699e6 0.948646
\(344\) −334404. −0.152362
\(345\) 2.49982e6 1.13073
\(346\) 1.74662e6 0.784345
\(347\) 1.30924e6 0.583706 0.291853 0.956463i \(-0.405728\pi\)
0.291853 + 0.956463i \(0.405728\pi\)
\(348\) 466574. 0.206525
\(349\) 784972. 0.344977 0.172489 0.985011i \(-0.444819\pi\)
0.172489 + 0.985011i \(0.444819\pi\)
\(350\) 2.76051e6 1.20453
\(351\) −654479. −0.283549
\(352\) −470683. −0.202475
\(353\) 3.22479e6 1.37741 0.688707 0.725040i \(-0.258179\pi\)
0.688707 + 0.725040i \(0.258179\pi\)
\(354\) 739186. 0.313506
\(355\) 2.29049e6 0.964624
\(356\) −183232. −0.0766259
\(357\) −3.74921e6 −1.55693
\(358\) −282790. −0.116616
\(359\) 4.41400e6 1.80758 0.903788 0.427980i \(-0.140775\pi\)
0.903788 + 0.427980i \(0.140775\pi\)
\(360\) −726961. −0.295634
\(361\) 2.02733e6 0.818759
\(362\) −91196.9 −0.0365771
\(363\) −505739. −0.201446
\(364\) −564106. −0.223155
\(365\) −1.71274e6 −0.672915
\(366\) −1.71405e6 −0.668836
\(367\) 703866. 0.272788 0.136394 0.990655i \(-0.456449\pi\)
0.136394 + 0.990655i \(0.456449\pi\)
\(368\) −792430. −0.305029
\(369\) 129410. 0.0494767
\(370\) 2.02884e6 0.770450
\(371\) −2.90667e6 −1.09638
\(372\) 661803. 0.247954
\(373\) −4.24526e6 −1.57991 −0.789955 0.613165i \(-0.789896\pi\)
−0.789955 + 0.613165i \(0.789896\pi\)
\(374\) −3.28168e6 −1.21316
\(375\) −147842. −0.0542901
\(376\) −438025. −0.159782
\(377\) 489452. 0.177360
\(378\) 3.23164e6 1.16331
\(379\) 1.39414e6 0.498548 0.249274 0.968433i \(-0.419808\pi\)
0.249274 + 0.968433i \(0.419808\pi\)
\(380\) −2.72333e6 −0.967479
\(381\) 489686. 0.172824
\(382\) 2.28295e6 0.800458
\(383\) 2.23700e6 0.779235 0.389618 0.920977i \(-0.372607\pi\)
0.389618 + 0.920977i \(0.372607\pi\)
\(384\) −164967. −0.0570913
\(385\) −7.69116e6 −2.64448
\(386\) 2.98854e6 1.02092
\(387\) 739970. 0.251152
\(388\) 2.16941e6 0.731579
\(389\) 66104.3 0.0221491 0.0110745 0.999939i \(-0.496475\pi\)
0.0110745 + 0.999939i \(0.496475\pi\)
\(390\) 545926. 0.181749
\(391\) −5.52496e6 −1.82763
\(392\) 1.70976e6 0.561978
\(393\) −2.16150e6 −0.705950
\(394\) −2.43598e6 −0.790558
\(395\) 3.32028e6 1.07073
\(396\) 1.04153e6 0.333759
\(397\) 1.92689e6 0.613593 0.306797 0.951775i \(-0.400743\pi\)
0.306797 + 0.951775i \(0.400743\pi\)
\(398\) −2.44036e6 −0.772230
\(399\) 4.45763e6 1.40175
\(400\) 846865. 0.264645
\(401\) −5.75402e6 −1.78694 −0.893471 0.449121i \(-0.851737\pi\)
−0.893471 + 0.449121i \(0.851737\pi\)
\(402\) −1.29682e6 −0.400235
\(403\) 694253. 0.212939
\(404\) −3.09468e6 −0.943327
\(405\) −367307. −0.111274
\(406\) −2.41678e6 −0.727650
\(407\) −2.90675e6 −0.869805
\(408\) −1.15018e6 −0.342070
\(409\) −2.90555e6 −0.858855 −0.429427 0.903101i \(-0.641285\pi\)
−0.429427 + 0.903101i \(0.641285\pi\)
\(410\) −293166. −0.0861300
\(411\) 1.25265e6 0.365786
\(412\) 1.90603e6 0.553207
\(413\) −3.82887e6 −1.10457
\(414\) 1.75349e6 0.502808
\(415\) −2.83931e6 −0.809268
\(416\) −173056. −0.0490290
\(417\) 908928. 0.255970
\(418\) 3.90176e6 1.09224
\(419\) −5.95953e6 −1.65835 −0.829176 0.558988i \(-0.811190\pi\)
−0.829176 + 0.558988i \(0.811190\pi\)
\(420\) −2.69564e6 −0.745655
\(421\) 5.60113e6 1.54017 0.770087 0.637938i \(-0.220213\pi\)
0.770087 + 0.637938i \(0.220213\pi\)
\(422\) 3.35650e6 0.917499
\(423\) 969261. 0.263384
\(424\) −891706. −0.240883
\(425\) 5.90449e6 1.58566
\(426\) −1.15016e6 −0.307067
\(427\) 8.87849e6 2.35651
\(428\) −907751. −0.239529
\(429\) −782155. −0.205187
\(430\) −1.67634e6 −0.437210
\(431\) 2.69481e6 0.698772 0.349386 0.936979i \(-0.386390\pi\)
0.349386 + 0.936979i \(0.386390\pi\)
\(432\) 991400. 0.255587
\(433\) −3.32140e6 −0.851337 −0.425668 0.904879i \(-0.639961\pi\)
−0.425668 + 0.904879i \(0.639961\pi\)
\(434\) −3.42804e6 −0.873617
\(435\) 2.33889e6 0.592634
\(436\) 1.93143e6 0.486591
\(437\) 6.56890e6 1.64547
\(438\) 860044. 0.214208
\(439\) −4.04883e6 −1.00269 −0.501347 0.865246i \(-0.667162\pi\)
−0.501347 + 0.865246i \(0.667162\pi\)
\(440\) −2.35949e6 −0.581013
\(441\) −3.78335e6 −0.926362
\(442\) −1.20658e6 −0.293764
\(443\) 4.16599e6 1.00858 0.504289 0.863535i \(-0.331755\pi\)
0.504289 + 0.863535i \(0.331755\pi\)
\(444\) −1.01877e6 −0.245256
\(445\) −918522. −0.219882
\(446\) −1.02184e6 −0.243247
\(447\) 2.90933e6 0.688690
\(448\) 854504. 0.201150
\(449\) 2.12545e6 0.497549 0.248774 0.968561i \(-0.419972\pi\)
0.248774 + 0.968561i \(0.419972\pi\)
\(450\) −1.87394e6 −0.436240
\(451\) 420023. 0.0972371
\(452\) 4.25744e6 0.980172
\(453\) −1.82157e6 −0.417062
\(454\) −1.35436e6 −0.308385
\(455\) −2.82781e6 −0.640356
\(456\) 1.36751e6 0.307976
\(457\) 2.43540e6 0.545482 0.272741 0.962088i \(-0.412070\pi\)
0.272741 + 0.962088i \(0.412070\pi\)
\(458\) 366155. 0.0815646
\(459\) 6.91221e6 1.53139
\(460\) −3.97237e6 −0.875297
\(461\) −7.40738e6 −1.62335 −0.811675 0.584109i \(-0.801444\pi\)
−0.811675 + 0.584109i \(0.801444\pi\)
\(462\) 3.86207e6 0.841813
\(463\) −8.34671e6 −1.80952 −0.904759 0.425924i \(-0.859949\pi\)
−0.904759 + 0.425924i \(0.859949\pi\)
\(464\) −741418. −0.159870
\(465\) 3.31755e6 0.711518
\(466\) −3.27161e6 −0.697906
\(467\) −373460. −0.0792414 −0.0396207 0.999215i \(-0.512615\pi\)
−0.0396207 + 0.999215i \(0.512615\pi\)
\(468\) 382938. 0.0808191
\(469\) 6.71733e6 1.41015
\(470\) −2.19577e6 −0.458504
\(471\) 4.48386e6 0.931322
\(472\) −1.17462e6 −0.242684
\(473\) 2.40171e6 0.493591
\(474\) −1.66726e6 −0.340845
\(475\) −7.02014e6 −1.42762
\(476\) 5.95775e6 1.20522
\(477\) 1.97317e6 0.397071
\(478\) −52286.7 −0.0104670
\(479\) −2.94442e6 −0.586356 −0.293178 0.956058i \(-0.594713\pi\)
−0.293178 + 0.956058i \(0.594713\pi\)
\(480\) −826964. −0.163826
\(481\) −1.06873e6 −0.210622
\(482\) −5.41198e6 −1.06106
\(483\) 6.50209e6 1.26819
\(484\) 803652. 0.155939
\(485\) 1.08750e7 2.09930
\(486\) −3.57978e6 −0.687489
\(487\) 3.58165e6 0.684323 0.342162 0.939641i \(-0.388841\pi\)
0.342162 + 0.939641i \(0.388841\pi\)
\(488\) 2.72373e6 0.517744
\(489\) −4.30428e6 −0.814007
\(490\) 8.57085e6 1.61263
\(491\) −5.10341e6 −0.955338 −0.477669 0.878540i \(-0.658518\pi\)
−0.477669 + 0.878540i \(0.658518\pi\)
\(492\) 147212. 0.0274176
\(493\) −5.16929e6 −0.957886
\(494\) 1.43456e6 0.264485
\(495\) 5.22107e6 0.957738
\(496\) −1.05165e6 −0.191941
\(497\) 5.95764e6 1.08189
\(498\) 1.42574e6 0.257613
\(499\) 4.21965e6 0.758621 0.379310 0.925269i \(-0.376161\pi\)
0.379310 + 0.925269i \(0.376161\pi\)
\(500\) 234931. 0.0420258
\(501\) 337587. 0.0600885
\(502\) −3.78549e6 −0.670445
\(503\) −6.56926e6 −1.15770 −0.578850 0.815434i \(-0.696498\pi\)
−0.578850 + 0.815434i \(0.696498\pi\)
\(504\) −1.89085e6 −0.331574
\(505\) −1.55133e7 −2.70692
\(506\) 5.69127e6 0.988174
\(507\) −287575. −0.0496857
\(508\) −778144. −0.133783
\(509\) −5.61314e6 −0.960310 −0.480155 0.877184i \(-0.659420\pi\)
−0.480155 + 0.877184i \(0.659420\pi\)
\(510\) −5.76574e6 −0.981588
\(511\) −4.45489e6 −0.754719
\(512\) 262144. 0.0441942
\(513\) −8.21827e6 −1.37875
\(514\) 753414. 0.125784
\(515\) 9.55476e6 1.58746
\(516\) 841763. 0.139176
\(517\) 3.14592e6 0.517631
\(518\) 5.27708e6 0.864111
\(519\) −4.39658e6 −0.716468
\(520\) −867512. −0.140691
\(521\) 1.19847e6 0.193434 0.0967172 0.995312i \(-0.469166\pi\)
0.0967172 + 0.995312i \(0.469166\pi\)
\(522\) 1.64061e6 0.263529
\(523\) −6.09023e6 −0.973597 −0.486798 0.873514i \(-0.661835\pi\)
−0.486798 + 0.873514i \(0.661835\pi\)
\(524\) 3.43477e6 0.546473
\(525\) −6.94875e6 −1.10029
\(526\) −786577. −0.123959
\(527\) −7.33228e6 −1.15004
\(528\) 1.18480e6 0.184953
\(529\) 3.14535e6 0.488686
\(530\) −4.47003e6 −0.691228
\(531\) 2.59919e6 0.400039
\(532\) −7.08347e6 −1.08509
\(533\) 154430. 0.0235458
\(534\) 461231. 0.0699947
\(535\) −4.55047e6 −0.687340
\(536\) 2.06074e6 0.309821
\(537\) 711839. 0.106524
\(538\) 2.17265e6 0.323619
\(539\) −1.22796e7 −1.82059
\(540\) 4.96979e6 0.733421
\(541\) −858076. −0.126047 −0.0630235 0.998012i \(-0.520074\pi\)
−0.0630235 + 0.998012i \(0.520074\pi\)
\(542\) 7.34196e6 1.07353
\(543\) 229561. 0.0334117
\(544\) 1.82771e6 0.264796
\(545\) 9.68209e6 1.39630
\(546\) 1.41997e6 0.203844
\(547\) 3.72893e6 0.532863 0.266432 0.963854i \(-0.414155\pi\)
0.266432 + 0.963854i \(0.414155\pi\)
\(548\) −1.99055e6 −0.283154
\(549\) −6.02708e6 −0.853446
\(550\) −6.08223e6 −0.857346
\(551\) 6.14603e6 0.862414
\(552\) 1.99471e6 0.278632
\(553\) 8.63614e6 1.20090
\(554\) −2.07464e6 −0.287189
\(555\) −5.10701e6 −0.703775
\(556\) −1.44435e6 −0.198146
\(557\) 3.40690e6 0.465287 0.232644 0.972562i \(-0.425262\pi\)
0.232644 + 0.972562i \(0.425262\pi\)
\(558\) 2.32709e6 0.316394
\(559\) 883036. 0.119522
\(560\) 4.28355e6 0.577209
\(561\) 8.26065e6 1.10817
\(562\) 917299. 0.122510
\(563\) −6.71361e6 −0.892658 −0.446329 0.894869i \(-0.647269\pi\)
−0.446329 + 0.894869i \(0.647269\pi\)
\(564\) 1.10260e6 0.145955
\(565\) 2.13421e7 2.81266
\(566\) −6.68806e6 −0.877524
\(567\) −955377. −0.124801
\(568\) 1.82768e6 0.237700
\(569\) 2.13854e6 0.276909 0.138454 0.990369i \(-0.455787\pi\)
0.138454 + 0.990369i \(0.455787\pi\)
\(570\) 6.85517e6 0.883754
\(571\) 1.66594e6 0.213830 0.106915 0.994268i \(-0.465903\pi\)
0.106915 + 0.994268i \(0.465903\pi\)
\(572\) 1.24290e6 0.158835
\(573\) −5.74665e6 −0.731187
\(574\) −762534. −0.0966005
\(575\) −1.02399e7 −1.29159
\(576\) −580072. −0.0728494
\(577\) −9.29528e6 −1.16231 −0.581156 0.813792i \(-0.697399\pi\)
−0.581156 + 0.813792i \(0.697399\pi\)
\(578\) 7.06369e6 0.879452
\(579\) −7.52274e6 −0.932567
\(580\) −3.71665e6 −0.458756
\(581\) −7.38512e6 −0.907648
\(582\) −5.46083e6 −0.668269
\(583\) 6.40428e6 0.780367
\(584\) −1.36667e6 −0.165818
\(585\) 1.91963e6 0.231915
\(586\) −2.79858e6 −0.336661
\(587\) 7.04955e6 0.844435 0.422217 0.906495i \(-0.361252\pi\)
0.422217 + 0.906495i \(0.361252\pi\)
\(588\) −4.30381e6 −0.513345
\(589\) 8.71772e6 1.03542
\(590\) −5.88823e6 −0.696394
\(591\) 6.13186e6 0.722143
\(592\) 1.61890e6 0.189852
\(593\) 1.12914e7 1.31859 0.659295 0.751884i \(-0.270855\pi\)
0.659295 + 0.751884i \(0.270855\pi\)
\(594\) −7.12028e6 −0.828002
\(595\) 2.98656e7 3.45843
\(596\) −4.62312e6 −0.533113
\(597\) 6.14288e6 0.705401
\(598\) 2.09251e6 0.239285
\(599\) −1.43629e7 −1.63559 −0.817794 0.575511i \(-0.804803\pi\)
−0.817794 + 0.575511i \(0.804803\pi\)
\(600\) −2.13173e6 −0.241743
\(601\) 1.73182e7 1.95576 0.977881 0.209164i \(-0.0670742\pi\)
0.977881 + 0.209164i \(0.0670742\pi\)
\(602\) −4.36020e6 −0.490360
\(603\) −4.56000e6 −0.510707
\(604\) 2.89460e6 0.322846
\(605\) 4.02863e6 0.447475
\(606\) 7.78993e6 0.861691
\(607\) −8.14344e6 −0.897090 −0.448545 0.893760i \(-0.648058\pi\)
−0.448545 + 0.893760i \(0.648058\pi\)
\(608\) −2.17306e6 −0.238403
\(609\) 6.08352e6 0.664679
\(610\) 1.36538e7 1.48569
\(611\) 1.15666e6 0.125344
\(612\) −4.04436e6 −0.436487
\(613\) −1.67984e7 −1.80558 −0.902789 0.430085i \(-0.858484\pi\)
−0.902789 + 0.430085i \(0.858484\pi\)
\(614\) 1.06030e7 1.13503
\(615\) 737958. 0.0786763
\(616\) −6.13709e6 −0.651645
\(617\) −1.22398e7 −1.29438 −0.647190 0.762329i \(-0.724056\pi\)
−0.647190 + 0.762329i \(0.724056\pi\)
\(618\) −4.79787e6 −0.505332
\(619\) −7.24433e6 −0.759927 −0.379964 0.925001i \(-0.624063\pi\)
−0.379964 + 0.925001i \(0.624063\pi\)
\(620\) −5.27182e6 −0.550784
\(621\) −1.19875e7 −1.24739
\(622\) 2.32863e6 0.241338
\(623\) −2.38910e6 −0.246612
\(624\) 435617. 0.0447861
\(625\) −9.16002e6 −0.937987
\(626\) 1.13159e7 1.15413
\(627\) −9.82150e6 −0.997721
\(628\) −7.12516e6 −0.720934
\(629\) 1.12872e7 1.13753
\(630\) −9.47863e6 −0.951468
\(631\) −3.25271e6 −0.325216 −0.162608 0.986691i \(-0.551991\pi\)
−0.162608 + 0.986691i \(0.551991\pi\)
\(632\) 2.64939e6 0.263847
\(633\) −8.44898e6 −0.838099
\(634\) −5.92470e6 −0.585388
\(635\) −3.90076e6 −0.383897
\(636\) 2.24460e6 0.220037
\(637\) −4.51483e6 −0.440852
\(638\) 5.32490e6 0.517917
\(639\) −4.04429e6 −0.391823
\(640\) 1.31410e6 0.126817
\(641\) −5.41673e6 −0.520706 −0.260353 0.965514i \(-0.583839\pi\)
−0.260353 + 0.965514i \(0.583839\pi\)
\(642\) 2.28499e6 0.218800
\(643\) −3.74463e6 −0.357175 −0.178588 0.983924i \(-0.557153\pi\)
−0.178588 + 0.983924i \(0.557153\pi\)
\(644\) −1.03323e7 −0.981704
\(645\) 4.21967e6 0.399374
\(646\) −1.51509e7 −1.42843
\(647\) 8.09188e6 0.759957 0.379978 0.924995i \(-0.375931\pi\)
0.379978 + 0.924995i \(0.375931\pi\)
\(648\) −293090. −0.0274197
\(649\) 8.43615e6 0.786199
\(650\) −2.23625e6 −0.207605
\(651\) 8.62906e6 0.798015
\(652\) 6.83978e6 0.630120
\(653\) 1.58199e7 1.45185 0.725923 0.687777i \(-0.241413\pi\)
0.725923 + 0.687777i \(0.241413\pi\)
\(654\) −4.86181e6 −0.444481
\(655\) 1.72181e7 1.56813
\(656\) −233929. −0.0212239
\(657\) 3.02416e6 0.273333
\(658\) −5.71127e6 −0.514243
\(659\) 7.21640e6 0.647302 0.323651 0.946177i \(-0.395090\pi\)
0.323651 + 0.946177i \(0.395090\pi\)
\(660\) 5.93930e6 0.530732
\(661\) −8.74671e6 −0.778647 −0.389324 0.921101i \(-0.627291\pi\)
−0.389324 + 0.921101i \(0.627291\pi\)
\(662\) −9.75353e6 −0.865001
\(663\) 3.03719e6 0.268342
\(664\) −2.26560e6 −0.199418
\(665\) −3.55087e7 −3.11373
\(666\) −3.58230e6 −0.312951
\(667\) 8.96487e6 0.780243
\(668\) −536449. −0.0465144
\(669\) 2.57219e6 0.222196
\(670\) 1.03303e7 0.889047
\(671\) −1.95620e7 −1.67728
\(672\) −2.15096e6 −0.183742
\(673\) −1.54748e7 −1.31701 −0.658504 0.752578i \(-0.728810\pi\)
−0.658504 + 0.752578i \(0.728810\pi\)
\(674\) −3.59341e6 −0.304689
\(675\) 1.28110e7 1.08224
\(676\) 456976. 0.0384615
\(677\) 1.05103e7 0.881340 0.440670 0.897669i \(-0.354741\pi\)
0.440670 + 0.897669i \(0.354741\pi\)
\(678\) −1.07168e7 −0.895349
\(679\) 2.82862e7 2.35451
\(680\) 9.16214e6 0.759844
\(681\) 3.40919e6 0.281698
\(682\) 7.55300e6 0.621811
\(683\) 4.19198e6 0.343849 0.171924 0.985110i \(-0.445001\pi\)
0.171924 + 0.985110i \(0.445001\pi\)
\(684\) 4.80855e6 0.392983
\(685\) −9.97843e6 −0.812524
\(686\) 8.26798e6 0.670794
\(687\) −921686. −0.0745060
\(688\) −1.33762e6 −0.107736
\(689\) 2.35466e6 0.188965
\(690\) 9.99926e6 0.799549
\(691\) −3.77069e6 −0.300418 −0.150209 0.988654i \(-0.547995\pi\)
−0.150209 + 0.988654i \(0.547995\pi\)
\(692\) 6.98646e6 0.554615
\(693\) 1.35802e7 1.07417
\(694\) 5.23694e6 0.412743
\(695\) −7.24037e6 −0.568590
\(696\) 1.86630e6 0.146035
\(697\) −1.63100e6 −0.127166
\(698\) 3.13989e6 0.243936
\(699\) 8.23530e6 0.637509
\(700\) 1.10420e7 0.851733
\(701\) 5.92759e6 0.455599 0.227800 0.973708i \(-0.426847\pi\)
0.227800 + 0.973708i \(0.426847\pi\)
\(702\) −2.61791e6 −0.200499
\(703\) −1.34200e7 −1.02415
\(704\) −1.88273e6 −0.143172
\(705\) 5.52720e6 0.418825
\(706\) 1.28992e7 0.973979
\(707\) −4.03506e7 −3.03600
\(708\) 2.95674e6 0.221682
\(709\) −760563. −0.0568224 −0.0284112 0.999596i \(-0.509045\pi\)
−0.0284112 + 0.999596i \(0.509045\pi\)
\(710\) 9.16197e6 0.682092
\(711\) −5.86256e6 −0.434924
\(712\) −732927. −0.0541827
\(713\) 1.27161e7 0.936760
\(714\) −1.49969e7 −1.10092
\(715\) 6.23052e6 0.455784
\(716\) −1.13116e6 −0.0824597
\(717\) 131616. 0.00956118
\(718\) 1.76560e7 1.27815
\(719\) −1.55797e7 −1.12392 −0.561961 0.827164i \(-0.689953\pi\)
−0.561961 + 0.827164i \(0.689953\pi\)
\(720\) −2.90784e6 −0.209045
\(721\) 2.48522e7 1.78044
\(722\) 8.10932e6 0.578950
\(723\) 1.36230e7 0.969233
\(724\) −364788. −0.0258639
\(725\) −9.58071e6 −0.676944
\(726\) −2.02295e6 −0.142444
\(727\) −1.08887e7 −0.764081 −0.382040 0.924146i \(-0.624778\pi\)
−0.382040 + 0.924146i \(0.624778\pi\)
\(728\) −2.25643e6 −0.157795
\(729\) 1.01238e7 0.705548
\(730\) −6.85097e6 −0.475822
\(731\) −9.32610e6 −0.645515
\(732\) −6.85618e6 −0.472939
\(733\) 2.96685e6 0.203956 0.101978 0.994787i \(-0.467483\pi\)
0.101978 + 0.994787i \(0.467483\pi\)
\(734\) 2.81546e6 0.192890
\(735\) −2.15745e7 −1.47307
\(736\) −3.16972e6 −0.215688
\(737\) −1.48003e7 −1.00370
\(738\) 517639. 0.0349853
\(739\) 1.10237e7 0.742537 0.371268 0.928526i \(-0.378923\pi\)
0.371268 + 0.928526i \(0.378923\pi\)
\(740\) 8.11538e6 0.544790
\(741\) −3.61107e6 −0.241596
\(742\) −1.16267e7 −0.775258
\(743\) 8.28375e6 0.550497 0.275248 0.961373i \(-0.411240\pi\)
0.275248 + 0.961373i \(0.411240\pi\)
\(744\) 2.64721e6 0.175330
\(745\) −2.31752e7 −1.52980
\(746\) −1.69810e7 −1.11717
\(747\) 5.01332e6 0.328719
\(748\) −1.31267e7 −0.857832
\(749\) −1.18359e7 −0.770898
\(750\) −591369. −0.0383889
\(751\) 9.93945e6 0.643077 0.321538 0.946897i \(-0.395800\pi\)
0.321538 + 0.946897i \(0.395800\pi\)
\(752\) −1.75210e6 −0.112983
\(753\) 9.52885e6 0.612425
\(754\) 1.95781e6 0.125413
\(755\) 1.45103e7 0.926424
\(756\) 1.29266e7 0.822581
\(757\) 1.74890e6 0.110924 0.0554620 0.998461i \(-0.482337\pi\)
0.0554620 + 0.998461i \(0.482337\pi\)
\(758\) 5.57655e6 0.352527
\(759\) −1.43261e7 −0.902657
\(760\) −1.08933e7 −0.684111
\(761\) 9.13174e6 0.571600 0.285800 0.958289i \(-0.407741\pi\)
0.285800 + 0.958289i \(0.407741\pi\)
\(762\) 1.95874e6 0.122205
\(763\) 2.51834e7 1.56604
\(764\) 9.13181e6 0.566009
\(765\) −2.02740e7 −1.25252
\(766\) 8.94799e6 0.551003
\(767\) 3.10172e6 0.190377
\(768\) −659869. −0.0403696
\(769\) 2.08814e7 1.27334 0.636669 0.771137i \(-0.280312\pi\)
0.636669 + 0.771137i \(0.280312\pi\)
\(770\) −3.07646e7 −1.86993
\(771\) −1.89649e6 −0.114899
\(772\) 1.19541e7 0.721897
\(773\) 1.36863e6 0.0823831 0.0411916 0.999151i \(-0.486885\pi\)
0.0411916 + 0.999151i \(0.486885\pi\)
\(774\) 2.95988e6 0.177591
\(775\) −1.35896e7 −0.812739
\(776\) 8.67762e6 0.517305
\(777\) −1.32835e7 −0.789331
\(778\) 264417. 0.0156618
\(779\) 1.93917e6 0.114491
\(780\) 2.18370e6 0.128516
\(781\) −1.31265e7 −0.770053
\(782\) −2.20998e7 −1.29233
\(783\) −1.12158e7 −0.653774
\(784\) 6.83903e6 0.397379
\(785\) −3.57177e7 −2.06876
\(786\) −8.64600e6 −0.499182
\(787\) 6.30683e6 0.362973 0.181486 0.983393i \(-0.441909\pi\)
0.181486 + 0.983393i \(0.441909\pi\)
\(788\) −9.74393e6 −0.559009
\(789\) 1.97997e6 0.113231
\(790\) 1.32811e7 0.757123
\(791\) 5.55115e7 3.15458
\(792\) 4.16611e6 0.236003
\(793\) −7.19236e6 −0.406152
\(794\) 7.70756e6 0.433876
\(795\) 1.12520e7 0.631409
\(796\) −9.76144e6 −0.546049
\(797\) 2.78632e7 1.55376 0.776882 0.629646i \(-0.216800\pi\)
0.776882 + 0.629646i \(0.216800\pi\)
\(798\) 1.78305e7 0.991189
\(799\) −1.22159e7 −0.676955
\(800\) 3.38746e6 0.187133
\(801\) 1.62182e6 0.0893144
\(802\) −2.30161e7 −1.26356
\(803\) 9.81548e6 0.537183
\(804\) −5.18729e6 −0.283009
\(805\) −5.17946e7 −2.81705
\(806\) 2.77701e6 0.150571
\(807\) −5.46900e6 −0.295614
\(808\) −1.23787e7 −0.667033
\(809\) −2.43317e7 −1.30708 −0.653540 0.756892i \(-0.726717\pi\)
−0.653540 + 0.756892i \(0.726717\pi\)
\(810\) −1.46923e6 −0.0786823
\(811\) 2.91892e7 1.55837 0.779184 0.626795i \(-0.215634\pi\)
0.779184 + 0.626795i \(0.215634\pi\)
\(812\) −9.66713e6 −0.514526
\(813\) −1.84812e7 −0.980626
\(814\) −1.16270e7 −0.615045
\(815\) 3.42871e7 1.80816
\(816\) −4.60072e6 −0.241880
\(817\) 1.10883e7 0.581177
\(818\) −1.16222e7 −0.607302
\(819\) 4.99302e6 0.260108
\(820\) −1.17266e6 −0.0609031
\(821\) 1.37611e7 0.712517 0.356258 0.934387i \(-0.384052\pi\)
0.356258 + 0.934387i \(0.384052\pi\)
\(822\) 5.01062e6 0.258649
\(823\) −3.73431e7 −1.92181 −0.960906 0.276875i \(-0.910701\pi\)
−0.960906 + 0.276875i \(0.910701\pi\)
\(824\) 7.62413e6 0.391176
\(825\) 1.53102e7 0.783151
\(826\) −1.53155e7 −0.781052
\(827\) 2.48774e7 1.26486 0.632429 0.774618i \(-0.282058\pi\)
0.632429 + 0.774618i \(0.282058\pi\)
\(828\) 7.01396e6 0.355539
\(829\) −1.97379e7 −0.997505 −0.498753 0.866744i \(-0.666208\pi\)
−0.498753 + 0.866744i \(0.666208\pi\)
\(830\) −1.13572e7 −0.572239
\(831\) 5.22228e6 0.262336
\(832\) −692224. −0.0346688
\(833\) 4.76829e7 2.38095
\(834\) 3.63571e6 0.180998
\(835\) −2.68916e6 −0.133475
\(836\) 1.56070e7 0.772333
\(837\) −1.59089e7 −0.784922
\(838\) −2.38381e7 −1.17263
\(839\) −6.01528e6 −0.295020 −0.147510 0.989061i \(-0.547126\pi\)
−0.147510 + 0.989061i \(0.547126\pi\)
\(840\) −1.07825e7 −0.527258
\(841\) −1.21234e7 −0.591063
\(842\) 2.24045e7 1.08907
\(843\) −2.30903e6 −0.111908
\(844\) 1.34260e7 0.648769
\(845\) 2.29078e6 0.110367
\(846\) 3.87704e6 0.186241
\(847\) 1.04786e7 0.501873
\(848\) −3.56682e6 −0.170330
\(849\) 1.68352e7 0.801583
\(850\) 2.36180e7 1.12123
\(851\) −1.95750e7 −0.926567
\(852\) −4.60063e6 −0.217129
\(853\) 3.37673e7 1.58900 0.794499 0.607266i \(-0.207734\pi\)
0.794499 + 0.607266i \(0.207734\pi\)
\(854\) 3.55140e7 1.66630
\(855\) 2.41048e7 1.12768
\(856\) −3.63101e6 −0.169372
\(857\) 5.91162e6 0.274951 0.137475 0.990505i \(-0.456101\pi\)
0.137475 + 0.990505i \(0.456101\pi\)
\(858\) −3.12862e6 −0.145089
\(859\) −3.32002e7 −1.53517 −0.767587 0.640945i \(-0.778543\pi\)
−0.767587 + 0.640945i \(0.778543\pi\)
\(860\) −6.70534e6 −0.309154
\(861\) 1.91945e6 0.0882407
\(862\) 1.07792e7 0.494106
\(863\) 4.15289e7 1.89812 0.949060 0.315095i \(-0.102036\pi\)
0.949060 + 0.315095i \(0.102036\pi\)
\(864\) 3.96560e6 0.180728
\(865\) 3.50224e7 1.59150
\(866\) −1.32856e7 −0.601986
\(867\) −1.77807e7 −0.803345
\(868\) −1.37121e7 −0.617741
\(869\) −1.90280e7 −0.854760
\(870\) 9.35556e6 0.419056
\(871\) −5.44163e6 −0.243043
\(872\) 7.72574e6 0.344072
\(873\) −1.92018e7 −0.852722
\(874\) 2.62756e7 1.16352
\(875\) 3.06320e6 0.135256
\(876\) 3.44018e6 0.151468
\(877\) −2.43232e7 −1.06788 −0.533939 0.845523i \(-0.679289\pi\)
−0.533939 + 0.845523i \(0.679289\pi\)
\(878\) −1.61953e7 −0.709012
\(879\) 7.04458e6 0.307527
\(880\) −9.43795e6 −0.410838
\(881\) −1.80739e7 −0.784535 −0.392267 0.919851i \(-0.628309\pi\)
−0.392267 + 0.919851i \(0.628309\pi\)
\(882\) −1.51334e7 −0.655037
\(883\) 5.97320e6 0.257813 0.128907 0.991657i \(-0.458853\pi\)
0.128907 + 0.991657i \(0.458853\pi\)
\(884\) −4.82630e6 −0.207723
\(885\) 1.48219e7 0.636128
\(886\) 1.66640e7 0.713172
\(887\) −2.64744e7 −1.12984 −0.564921 0.825145i \(-0.691093\pi\)
−0.564921 + 0.825145i \(0.691093\pi\)
\(888\) −4.07509e6 −0.173422
\(889\) −1.01460e7 −0.430566
\(890\) −3.67409e6 −0.155480
\(891\) 2.10498e6 0.0888290
\(892\) −4.08738e6 −0.172002
\(893\) 1.45241e7 0.609483
\(894\) 1.16373e7 0.486978
\(895\) −5.67039e6 −0.236622
\(896\) 3.41802e6 0.142234
\(897\) −5.26727e6 −0.218577
\(898\) 8.50182e6 0.351820
\(899\) 1.18975e7 0.490970
\(900\) −7.49578e6 −0.308468
\(901\) −2.48685e7 −1.02056
\(902\) 1.68009e6 0.0687570
\(903\) 1.09755e7 0.447924
\(904\) 1.70298e7 0.693087
\(905\) −1.82864e6 −0.0742177
\(906\) −7.28628e6 −0.294907
\(907\) −4.33417e7 −1.74940 −0.874698 0.484668i \(-0.838940\pi\)
−0.874698 + 0.484668i \(0.838940\pi\)
\(908\) −5.41743e6 −0.218061
\(909\) 2.73916e7 1.09953
\(910\) −1.13112e7 −0.452800
\(911\) −1.85162e7 −0.739192 −0.369596 0.929193i \(-0.620504\pi\)
−0.369596 + 0.929193i \(0.620504\pi\)
\(912\) 5.47003e6 0.217772
\(913\) 1.62717e7 0.646033
\(914\) 9.74161e6 0.385714
\(915\) −3.43694e7 −1.35712
\(916\) 1.46462e6 0.0576749
\(917\) 4.47849e7 1.75877
\(918\) 2.76488e7 1.08285
\(919\) 2.01153e7 0.785666 0.392833 0.919610i \(-0.371495\pi\)
0.392833 + 0.919610i \(0.371495\pi\)
\(920\) −1.58895e7 −0.618929
\(921\) −2.66898e7 −1.03680
\(922\) −2.96295e7 −1.14788
\(923\) −4.82621e6 −0.186467
\(924\) 1.54483e7 0.595252
\(925\) 2.09196e7 0.803896
\(926\) −3.33868e7 −1.27952
\(927\) −1.68707e7 −0.644812
\(928\) −2.96567e6 −0.113045
\(929\) 2.02700e7 0.770575 0.385287 0.922797i \(-0.374102\pi\)
0.385287 + 0.922797i \(0.374102\pi\)
\(930\) 1.32702e7 0.503119
\(931\) −5.66926e7 −2.14364
\(932\) −1.30864e7 −0.493494
\(933\) −5.86164e6 −0.220452
\(934\) −1.49384e6 −0.0560321
\(935\) −6.58030e7 −2.46159
\(936\) 1.53175e6 0.0571478
\(937\) −4.72641e7 −1.75866 −0.879330 0.476212i \(-0.842009\pi\)
−0.879330 + 0.476212i \(0.842009\pi\)
\(938\) 2.68693e7 0.997125
\(939\) −2.84844e7 −1.05425
\(940\) −8.78310e6 −0.324211
\(941\) −3.75847e7 −1.38368 −0.691841 0.722050i \(-0.743200\pi\)
−0.691841 + 0.722050i \(0.743200\pi\)
\(942\) 1.79355e7 0.658544
\(943\) 2.82856e6 0.103583
\(944\) −4.69846e6 −0.171603
\(945\) 6.47996e7 2.36044
\(946\) 9.60684e6 0.349022
\(947\) −3.39987e7 −1.23193 −0.615966 0.787772i \(-0.711234\pi\)
−0.615966 + 0.787772i \(0.711234\pi\)
\(948\) −6.66904e6 −0.241014
\(949\) 3.60886e6 0.130078
\(950\) −2.80806e7 −1.00948
\(951\) 1.49137e7 0.534728
\(952\) 2.38310e7 0.852216
\(953\) −1.65163e7 −0.589089 −0.294545 0.955638i \(-0.595168\pi\)
−0.294545 + 0.955638i \(0.595168\pi\)
\(954\) 7.89267e6 0.280771
\(955\) 4.57769e7 1.62419
\(956\) −209147. −0.00740128
\(957\) −1.34038e7 −0.473096
\(958\) −1.17777e7 −0.414616
\(959\) −2.59542e7 −0.911300
\(960\) −3.30786e6 −0.115843
\(961\) −1.17534e7 −0.410541
\(962\) −4.27490e6 −0.148932
\(963\) 8.03469e6 0.279192
\(964\) −2.16479e7 −0.750280
\(965\) 5.99249e7 2.07152
\(966\) 2.60084e7 0.896748
\(967\) 5.26159e7 1.80947 0.904733 0.425979i \(-0.140070\pi\)
0.904733 + 0.425979i \(0.140070\pi\)
\(968\) 3.21461e6 0.110266
\(969\) 3.81379e7 1.30481
\(970\) 4.35000e7 1.48443
\(971\) 2.54616e7 0.866639 0.433319 0.901240i \(-0.357342\pi\)
0.433319 + 0.901240i \(0.357342\pi\)
\(972\) −1.43191e7 −0.486128
\(973\) −1.88324e7 −0.637711
\(974\) 1.43266e7 0.483890
\(975\) 5.62910e6 0.189639
\(976\) 1.08949e7 0.366100
\(977\) 8.64073e6 0.289610 0.144805 0.989460i \(-0.453744\pi\)
0.144805 + 0.989460i \(0.453744\pi\)
\(978\) −1.72171e7 −0.575590
\(979\) 5.26392e6 0.175530
\(980\) 3.42834e7 1.14030
\(981\) −1.70955e7 −0.567165
\(982\) −2.04137e7 −0.675526
\(983\) 2.50492e7 0.826818 0.413409 0.910545i \(-0.364338\pi\)
0.413409 + 0.910545i \(0.364338\pi\)
\(984\) 588847. 0.0193872
\(985\) −4.88454e7 −1.60410
\(986\) −2.06772e7 −0.677328
\(987\) 1.43764e7 0.469740
\(988\) 5.73823e6 0.187019
\(989\) 1.61738e7 0.525802
\(990\) 2.08843e7 0.677223
\(991\) 5.11941e6 0.165591 0.0827953 0.996567i \(-0.473615\pi\)
0.0827953 + 0.996567i \(0.473615\pi\)
\(992\) −4.20660e6 −0.135723
\(993\) 2.45516e7 0.790144
\(994\) 2.38306e7 0.765012
\(995\) −4.89331e7 −1.56692
\(996\) 5.70297e6 0.182160
\(997\) 4.73546e7 1.50878 0.754388 0.656429i \(-0.227934\pi\)
0.754388 + 0.656429i \(0.227934\pi\)
\(998\) 1.68786e7 0.536426
\(999\) 2.44900e7 0.776381
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.6.a.c.1.1 2
3.2 odd 2 234.6.a.h.1.1 2
4.3 odd 2 208.6.a.g.1.2 2
5.2 odd 4 650.6.b.h.599.4 4
5.3 odd 4 650.6.b.h.599.1 4
5.4 even 2 650.6.a.b.1.2 2
8.3 odd 2 832.6.a.m.1.1 2
8.5 even 2 832.6.a.k.1.2 2
13.5 odd 4 338.6.b.b.337.1 4
13.8 odd 4 338.6.b.b.337.3 4
13.12 even 2 338.6.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.6.a.c.1.1 2 1.1 even 1 trivial
208.6.a.g.1.2 2 4.3 odd 2
234.6.a.h.1.1 2 3.2 odd 2
338.6.a.f.1.1 2 13.12 even 2
338.6.b.b.337.1 4 13.5 odd 4
338.6.b.b.337.3 4 13.8 odd 4
650.6.a.b.1.2 2 5.4 even 2
650.6.b.h.599.1 4 5.3 odd 4
650.6.b.h.599.4 4 5.2 odd 4
832.6.a.k.1.2 2 8.5 even 2
832.6.a.m.1.1 2 8.3 odd 2