Properties

Label 26.4.a
Level $26$
Weight $4$
Character orbit 26.a
Rep. character $\chi_{26}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $14$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(14\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(26))\).

Total New Old
Modular forms 13 3 10
Cusp forms 9 3 6
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(4\)\(2\)\(2\)\(3\)\(2\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(8\)\(3\)\(5\)\(6\)\(3\)\(3\)\(2\)\(0\)\(2\)
Minus space\(-\)\(5\)\(0\)\(5\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)

Trace form

\( 3 q + 2 q^{2} + 6 q^{3} + 12 q^{4} + 10 q^{5} + 4 q^{7} + 8 q^{8} - 55 q^{9} - 24 q^{10} - 84 q^{11} + 24 q^{12} + 13 q^{13} - 68 q^{14} - 56 q^{15} + 48 q^{16} - 4 q^{17} - 38 q^{18} + 168 q^{19} + 40 q^{20}+ \cdots + 1160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(26))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
26.4.a.a 26.a 1.a $1$ $1.534$ \(\Q\) None 26.4.a.a \(-2\) \(3\) \(11\) \(19\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}+11q^{5}-6q^{6}+\cdots\)
26.4.a.b 26.a 1.a $1$ $1.534$ \(\Q\) None 26.4.a.b \(2\) \(-1\) \(17\) \(-35\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-q^{3}+4q^{4}+17q^{5}-2q^{6}+\cdots\)
26.4.a.c 26.a 1.a $1$ $1.534$ \(\Q\) None 26.4.a.c \(2\) \(4\) \(-18\) \(20\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{3}+4q^{4}-18q^{5}+8q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(26))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(26)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)