Properties

Label 26.4
Level 26
Weight 4
Dimension 21
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 168
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 26 = 2 \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(168\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(26))\).

Total New Old
Modular forms 75 21 54
Cusp forms 51 21 30
Eisenstein series 24 0 24

Trace form

\( 21 q + 72 q^{7} + 24 q^{8} - 90 q^{10} - 120 q^{11} - 48 q^{12} - 288 q^{13} - 120 q^{14} - 144 q^{15} + 237 q^{17} + 270 q^{18} + 684 q^{19} + 132 q^{20} + 120 q^{21} - 228 q^{23} - 375 q^{25} - 828 q^{27}+ \cdots + 5544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
26.4.a \(\chi_{26}(1, \cdot)\) 26.4.a.a 1 1
26.4.a.b 1
26.4.a.c 1
26.4.b \(\chi_{26}(25, \cdot)\) 26.4.b.a 4 1
26.4.c \(\chi_{26}(3, \cdot)\) 26.4.c.a 2 2
26.4.c.b 4
26.4.e \(\chi_{26}(17, \cdot)\) 26.4.e.a 8 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(26))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(26)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)