Properties

Label 26.3.f.b.19.1
Level $26$
Weight $3$
Character 26.19
Analytic conductor $0.708$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,3,Mod(7,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 26.f (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.708448687337\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(3.90972 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 26.19
Dual form 26.3.f.b.11.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-1.52185 + 2.63592i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.79174 - 4.79174i) q^{5} +(-4.15776 - 1.11407i) q^{6} +(1.13983 - 4.25390i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-0.132034 - 0.228689i) q^{9} +O(q^{10})\) \(q+(0.366025 + 1.36603i) q^{2} +(-1.52185 + 2.63592i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.79174 - 4.79174i) q^{5} +(-4.15776 - 1.11407i) q^{6} +(1.13983 - 4.25390i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-0.132034 - 0.228689i) q^{9} +(8.29953 + 4.79174i) q^{10} +(-13.8758 + 3.71800i) q^{11} -6.08739i q^{12} +(1.84809 - 12.8680i) q^{13} +6.22814 q^{14} +(5.33833 + 19.9229i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-20.9957 + 12.1219i) q^{17} +(0.264067 - 0.264067i) q^{18} +(25.4592 + 6.82178i) q^{19} +(-3.50779 + 13.0913i) q^{20} +(9.47827 + 9.47827i) q^{21} +(-10.1578 - 17.5938i) q^{22} +(-5.44507 - 3.14371i) q^{23} +(8.31552 - 2.22814i) q^{24} -20.9215i q^{25} +(18.2544 - 2.18546i) q^{26} -26.5895 q^{27} +(2.27966 + 8.50779i) q^{28} +(11.1112 - 19.2451i) q^{29} +(-25.2612 + 14.5846i) q^{30} +(-8.59518 + 8.59518i) q^{31} +(5.46410 + 1.46410i) q^{32} +(11.3164 - 42.2336i) q^{33} +(-24.2437 - 24.2437i) q^{34} +(-14.9218 - 25.8453i) q^{35} +(0.457378 + 0.264067i) q^{36} +(-6.13936 + 1.64504i) q^{37} +37.2749i q^{38} +(31.1064 + 24.4545i) q^{39} -19.1669 q^{40} +(18.8845 + 70.4778i) q^{41} +(-9.47827 + 16.4168i) q^{42} +(26.9695 - 15.5708i) q^{43} +(20.3155 - 20.3155i) q^{44} +(-1.72849 - 0.463147i) q^{45} +(2.30136 - 8.58878i) q^{46} +(7.65637 + 7.65637i) q^{47} +(6.08739 + 10.5437i) q^{48} +(25.6388 + 14.8026i) q^{49} +(28.5793 - 7.65779i) q^{50} -73.7905i q^{51} +(9.66698 + 24.1361i) q^{52} -33.7616 q^{53} +(-9.73243 - 36.3219i) q^{54} +(-48.6733 + 84.3047i) q^{55} +(-10.7875 + 6.22814i) q^{56} +(-56.7267 + 56.7267i) q^{57} +(30.3563 + 8.13394i) q^{58} +(9.77592 - 36.4842i) q^{59} +(-29.1692 - 29.1692i) q^{60} +(11.5359 + 19.9807i) q^{61} +(-14.8873 - 8.59518i) q^{62} +(-1.12332 + 0.300991i) q^{63} +8.00000i q^{64} +(-52.8043 - 70.5155i) q^{65} +61.8342 q^{66} +(-27.8544 - 103.954i) q^{67} +(24.2437 - 41.9914i) q^{68} +(16.5731 - 9.56849i) q^{69} +(29.8436 - 29.8436i) q^{70} +(2.20861 + 0.591796i) q^{71} +(-0.193311 + 0.721445i) q^{72} +(38.1773 + 38.1773i) q^{73} +(-4.49432 - 7.78440i) q^{74} +(55.1473 + 31.8393i) q^{75} +(-50.9185 + 13.6436i) q^{76} +63.2639i q^{77} +(-22.0197 + 51.4430i) q^{78} -19.1299 q^{79} +(-7.01559 - 26.1825i) q^{80} +(41.6534 - 72.1459i) q^{81} +(-89.3622 + 51.5933i) q^{82} +(34.7720 - 34.7720i) q^{83} +(-25.8951 - 6.93858i) q^{84} +(-42.5210 + 158.691i) q^{85} +(31.1417 + 31.1417i) q^{86} +(33.8190 + 58.5762i) q^{87} +(35.1875 + 20.3155i) q^{88} +(3.47190 - 0.930292i) q^{89} -2.53068i q^{90} +(-52.6325 - 22.5289i) q^{91} +12.5748 q^{92} +(-9.57562 - 35.7367i) q^{93} +(-7.65637 + 13.2612i) q^{94} +(154.682 - 89.3058i) q^{95} +(-12.1748 + 12.1748i) q^{96} +(-24.3107 - 6.51404i) q^{97} +(-10.8362 + 40.4414i) q^{98} +(2.68233 + 2.68233i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} + 6 q^{6} - 2 q^{7} - 16 q^{8} - 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} + 6 q^{5} + 6 q^{6} - 2 q^{7} - 16 q^{8} - 42 q^{9} - 18 q^{10} - 18 q^{11} + 36 q^{13} + 20 q^{14} + 66 q^{15} + 16 q^{16} - 42 q^{17} + 84 q^{18} + 46 q^{19} + 24 q^{20} - 102 q^{21} - 42 q^{22} - 36 q^{23} - 12 q^{24} + 40 q^{26} + 72 q^{27} - 4 q^{28} - 6 q^{29} - 192 q^{30} + 32 q^{31} + 16 q^{32} + 42 q^{33} - 60 q^{34} - 78 q^{35} - 48 q^{36} - 106 q^{37} + 12 q^{39} - 24 q^{40} + 132 q^{41} + 102 q^{42} - 108 q^{43} + 84 q^{44} + 240 q^{45} + 90 q^{46} + 60 q^{47} + 258 q^{49} + 194 q^{50} + 32 q^{52} - 132 q^{53} - 270 q^{54} - 162 q^{55} - 12 q^{56} - 294 q^{57} - 24 q^{58} + 18 q^{59} - 120 q^{60} + 36 q^{61} - 12 q^{62} - 72 q^{63} - 300 q^{65} + 108 q^{66} - 74 q^{67} + 60 q^{68} + 258 q^{69} + 156 q^{70} - 174 q^{71} + 132 q^{72} + 166 q^{73} - 32 q^{74} + 6 q^{75} - 92 q^{76} + 126 q^{78} - 96 q^{79} + 48 q^{80} - 12 q^{81} - 252 q^{82} - 240 q^{83} - 132 q^{84} - 24 q^{85} + 132 q^{86} + 360 q^{87} - 12 q^{88} + 294 q^{89} + 298 q^{91} - 216 q^{92} + 270 q^{93} - 60 q^{94} + 714 q^{95} - 58 q^{97} - 250 q^{98} + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) −1.52185 + 2.63592i −0.507282 + 0.878639i 0.492682 + 0.870209i \(0.336016\pi\)
−0.999964 + 0.00842924i \(0.997317\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 4.79174 4.79174i 0.958347 0.958347i −0.0408192 0.999167i \(-0.512997\pi\)
0.999167 + 0.0408192i \(0.0129968\pi\)
\(6\) −4.15776 1.11407i −0.692960 0.185678i
\(7\) 1.13983 4.25390i 0.162833 0.607700i −0.835474 0.549530i \(-0.814807\pi\)
0.998307 0.0581698i \(-0.0185265\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −0.132034 0.228689i −0.0146704 0.0254099i
\(10\) 8.29953 + 4.79174i 0.829953 + 0.479174i
\(11\) −13.8758 + 3.71800i −1.26143 + 0.338000i −0.826743 0.562580i \(-0.809809\pi\)
−0.434690 + 0.900580i \(0.643142\pi\)
\(12\) 6.08739i 0.507282i
\(13\) 1.84809 12.8680i 0.142161 0.989844i
\(14\) 6.22814 0.444867
\(15\) 5.33833 + 19.9229i 0.355888 + 1.32819i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −20.9957 + 12.1219i −1.23504 + 0.713051i −0.968076 0.250656i \(-0.919354\pi\)
−0.266964 + 0.963707i \(0.586020\pi\)
\(18\) 0.264067 0.264067i 0.0146704 0.0146704i
\(19\) 25.4592 + 6.82178i 1.33996 + 0.359041i 0.856419 0.516281i \(-0.172684\pi\)
0.483540 + 0.875322i \(0.339351\pi\)
\(20\) −3.50779 + 13.0913i −0.175390 + 0.654563i
\(21\) 9.47827 + 9.47827i 0.451346 + 0.451346i
\(22\) −10.1578 17.5938i −0.461716 0.799716i
\(23\) −5.44507 3.14371i −0.236742 0.136683i 0.376936 0.926239i \(-0.376978\pi\)
−0.613678 + 0.789556i \(0.710311\pi\)
\(24\) 8.31552 2.22814i 0.346480 0.0928391i
\(25\) 20.9215i 0.836859i
\(26\) 18.2544 2.18546i 0.702093 0.0840562i
\(27\) −26.5895 −0.984796
\(28\) 2.27966 + 8.50779i 0.0814163 + 0.303850i
\(29\) 11.1112 19.2451i 0.383144 0.663625i −0.608366 0.793657i \(-0.708175\pi\)
0.991510 + 0.130032i \(0.0415080\pi\)
\(30\) −25.2612 + 14.5846i −0.842041 + 0.486153i
\(31\) −8.59518 + 8.59518i −0.277264 + 0.277264i −0.832016 0.554752i \(-0.812813\pi\)
0.554752 + 0.832016i \(0.312813\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 11.3164 42.2336i 0.342923 1.27980i
\(34\) −24.2437 24.2437i −0.713051 0.713051i
\(35\) −14.9218 25.8453i −0.426337 0.738438i
\(36\) 0.457378 + 0.264067i 0.0127049 + 0.00733521i
\(37\) −6.13936 + 1.64504i −0.165929 + 0.0444605i −0.340827 0.940126i \(-0.610707\pi\)
0.174898 + 0.984587i \(0.444040\pi\)
\(38\) 37.2749i 0.980919i
\(39\) 31.1064 + 24.4545i 0.797599 + 0.627038i
\(40\) −19.1669 −0.479174
\(41\) 18.8845 + 70.4778i 0.460596 + 1.71897i 0.671091 + 0.741375i \(0.265826\pi\)
−0.210495 + 0.977595i \(0.567508\pi\)
\(42\) −9.47827 + 16.4168i −0.225673 + 0.390877i
\(43\) 26.9695 15.5708i 0.627197 0.362113i −0.152468 0.988308i \(-0.548722\pi\)
0.779666 + 0.626196i \(0.215389\pi\)
\(44\) 20.3155 20.3155i 0.461716 0.461716i
\(45\) −1.72849 0.463147i −0.0384109 0.0102922i
\(46\) 2.30136 8.58878i 0.0500295 0.186713i
\(47\) 7.65637 + 7.65637i 0.162902 + 0.162902i 0.783851 0.620949i \(-0.213253\pi\)
−0.620949 + 0.783851i \(0.713253\pi\)
\(48\) 6.08739 + 10.5437i 0.126821 + 0.219660i
\(49\) 25.6388 + 14.8026i 0.523241 + 0.302093i
\(50\) 28.5793 7.65779i 0.571585 0.153156i
\(51\) 73.7905i 1.44687i
\(52\) 9.66698 + 24.1361i 0.185903 + 0.464155i
\(53\) −33.7616 −0.637010 −0.318505 0.947921i \(-0.603181\pi\)
−0.318505 + 0.947921i \(0.603181\pi\)
\(54\) −9.73243 36.3219i −0.180230 0.672628i
\(55\) −48.6733 + 84.3047i −0.884969 + 1.53281i
\(56\) −10.7875 + 6.22814i −0.192633 + 0.111217i
\(57\) −56.7267 + 56.7267i −0.995205 + 0.995205i
\(58\) 30.3563 + 8.13394i 0.523384 + 0.140240i
\(59\) 9.77592 36.4842i 0.165694 0.618377i −0.832257 0.554390i \(-0.812952\pi\)
0.997951 0.0639871i \(-0.0203817\pi\)
\(60\) −29.1692 29.1692i −0.486153 0.486153i
\(61\) 11.5359 + 19.9807i 0.189113 + 0.327553i 0.944955 0.327201i \(-0.106106\pi\)
−0.755842 + 0.654754i \(0.772772\pi\)
\(62\) −14.8873 8.59518i −0.240118 0.138632i
\(63\) −1.12332 + 0.300991i −0.0178304 + 0.00477764i
\(64\) 8.00000i 0.125000i
\(65\) −52.8043 70.5155i −0.812374 1.08485i
\(66\) 61.8342 0.936882
\(67\) −27.8544 103.954i −0.415737 1.55155i −0.783355 0.621575i \(-0.786493\pi\)
0.367618 0.929977i \(-0.380173\pi\)
\(68\) 24.2437 41.9914i 0.356525 0.617520i
\(69\) 16.5731 9.56849i 0.240190 0.138674i
\(70\) 29.8436 29.8436i 0.426337 0.426337i
\(71\) 2.20861 + 0.591796i 0.0311072 + 0.00833516i 0.274339 0.961633i \(-0.411541\pi\)
−0.243232 + 0.969968i \(0.578208\pi\)
\(72\) −0.193311 + 0.721445i −0.00268487 + 0.0100201i
\(73\) 38.1773 + 38.1773i 0.522977 + 0.522977i 0.918469 0.395492i \(-0.129426\pi\)
−0.395492 + 0.918469i \(0.629426\pi\)
\(74\) −4.49432 7.78440i −0.0607341 0.105195i
\(75\) 55.1473 + 31.8393i 0.735297 + 0.424524i
\(76\) −50.9185 + 13.6436i −0.669980 + 0.179521i
\(77\) 63.2639i 0.821610i
\(78\) −22.0197 + 51.4430i −0.282304 + 0.659526i
\(79\) −19.1299 −0.242150 −0.121075 0.992643i \(-0.538634\pi\)
−0.121075 + 0.992643i \(0.538634\pi\)
\(80\) −7.01559 26.1825i −0.0876949 0.327282i
\(81\) 41.6534 72.1459i 0.514240 0.890690i
\(82\) −89.3622 + 51.5933i −1.08978 + 0.629187i
\(83\) 34.7720 34.7720i 0.418940 0.418940i −0.465898 0.884838i \(-0.654269\pi\)
0.884838 + 0.465898i \(0.154269\pi\)
\(84\) −25.8951 6.93858i −0.308275 0.0826021i
\(85\) −42.5210 + 158.691i −0.500247 + 1.86695i
\(86\) 31.1417 + 31.1417i 0.362113 + 0.362113i
\(87\) 33.8190 + 58.5762i 0.388724 + 0.673290i
\(88\) 35.1875 + 20.3155i 0.399858 + 0.230858i
\(89\) 3.47190 0.930292i 0.0390101 0.0104527i −0.239261 0.970955i \(-0.576905\pi\)
0.278271 + 0.960503i \(0.410239\pi\)
\(90\) 2.53068i 0.0281187i
\(91\) −52.6325 22.5289i −0.578379 0.247570i
\(92\) 12.5748 0.136683
\(93\) −9.57562 35.7367i −0.102964 0.384266i
\(94\) −7.65637 + 13.2612i −0.0814508 + 0.141077i
\(95\) 154.682 89.3058i 1.62823 0.940061i
\(96\) −12.1748 + 12.1748i −0.126821 + 0.126821i
\(97\) −24.3107 6.51404i −0.250626 0.0671551i 0.131319 0.991340i \(-0.458079\pi\)
−0.381945 + 0.924185i \(0.624746\pi\)
\(98\) −10.8362 + 40.4414i −0.110574 + 0.412667i
\(99\) 2.68233 + 2.68233i 0.0270943 + 0.0270943i
\(100\) 20.9215 + 36.2371i 0.209215 + 0.362371i
\(101\) −131.473 75.9060i −1.30171 0.751545i −0.321016 0.947074i \(-0.604024\pi\)
−0.980698 + 0.195529i \(0.937358\pi\)
\(102\) 100.800 27.0092i 0.988232 0.264796i
\(103\) 17.3672i 0.168614i 0.996440 + 0.0843069i \(0.0268676\pi\)
−0.996440 + 0.0843069i \(0.973132\pi\)
\(104\) −29.4321 + 22.0397i −0.283001 + 0.211921i
\(105\) 90.8347 0.865093
\(106\) −12.3576 46.1191i −0.116581 0.435086i
\(107\) −26.5964 + 46.0662i −0.248564 + 0.430526i −0.963128 0.269045i \(-0.913292\pi\)
0.714564 + 0.699571i \(0.246625\pi\)
\(108\) 46.0544 26.5895i 0.426429 0.246199i
\(109\) 53.3779 53.3779i 0.489705 0.489705i −0.418508 0.908213i \(-0.637447\pi\)
0.908213 + 0.418508i \(0.137447\pi\)
\(110\) −132.978 35.6313i −1.20889 0.323921i
\(111\) 5.00699 18.6863i 0.0451080 0.168345i
\(112\) −12.4563 12.4563i −0.111217 0.111217i
\(113\) −18.1133 31.3732i −0.160295 0.277639i 0.774680 0.632354i \(-0.217911\pi\)
−0.934974 + 0.354715i \(0.884578\pi\)
\(114\) −98.2535 56.7267i −0.861873 0.497603i
\(115\) −41.1552 + 11.0275i −0.357871 + 0.0958912i
\(116\) 44.4447i 0.383144i
\(117\) −3.18677 + 1.27637i −0.0272374 + 0.0109091i
\(118\) 53.4166 0.452683
\(119\) 27.6337 + 103.130i 0.232216 + 0.866641i
\(120\) 29.1692 50.5225i 0.243076 0.421020i
\(121\) 73.9242 42.6801i 0.610943 0.352728i
\(122\) −23.0717 + 23.0717i −0.189113 + 0.189113i
\(123\) −214.513 57.4785i −1.74401 0.467305i
\(124\) 6.29211 23.4825i 0.0507428 0.189375i
\(125\) 19.5432 + 19.5432i 0.156346 + 0.156346i
\(126\) −0.822324 1.42431i −0.00652638 0.0113040i
\(127\) −115.255 66.5425i −0.907520 0.523957i −0.0278874 0.999611i \(-0.508878\pi\)
−0.879632 + 0.475654i \(0.842211\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) 94.7857i 0.734773i
\(130\) 76.9982 97.9425i 0.592294 0.753404i
\(131\) 38.2739 0.292167 0.146083 0.989272i \(-0.453333\pi\)
0.146083 + 0.989272i \(0.453333\pi\)
\(132\) 22.6329 + 84.4671i 0.171461 + 0.639902i
\(133\) 58.0383 100.525i 0.436378 0.755829i
\(134\) 131.808 76.0996i 0.983644 0.567907i
\(135\) −127.410 + 127.410i −0.943777 + 0.943777i
\(136\) 66.2351 + 17.7476i 0.487023 + 0.130497i
\(137\) 2.07966 7.76140i 0.0151800 0.0566525i −0.957920 0.287034i \(-0.907331\pi\)
0.973100 + 0.230381i \(0.0739974\pi\)
\(138\) 19.1370 + 19.1370i 0.138674 + 0.138674i
\(139\) 121.981 + 211.277i 0.877558 + 1.51998i 0.854012 + 0.520253i \(0.174162\pi\)
0.0235463 + 0.999723i \(0.492504\pi\)
\(140\) 51.6906 + 29.8436i 0.369219 + 0.213169i
\(141\) −31.8334 + 8.52973i −0.225769 + 0.0604945i
\(142\) 3.23364i 0.0227721i
\(143\) 22.1994 + 185.424i 0.155241 + 1.29667i
\(144\) −1.05627 −0.00733521
\(145\) −38.9757 145.459i −0.268798 1.00317i
\(146\) −38.1773 + 66.1251i −0.261488 + 0.452911i
\(147\) −78.0367 + 45.0545i −0.530862 + 0.306493i
\(148\) 8.98865 8.98865i 0.0607341 0.0607341i
\(149\) 182.687 + 48.9509i 1.22609 + 0.328529i 0.813055 0.582187i \(-0.197803\pi\)
0.413033 + 0.910716i \(0.364469\pi\)
\(150\) −23.3080 + 86.9865i −0.155386 + 0.579910i
\(151\) −70.5995 70.5995i −0.467546 0.467546i 0.433573 0.901119i \(-0.357253\pi\)
−0.901119 + 0.433573i \(0.857253\pi\)
\(152\) −37.2749 64.5620i −0.245230 0.424750i
\(153\) 5.54428 + 3.20099i 0.0362371 + 0.0209215i
\(154\) −86.4202 + 23.1562i −0.561170 + 0.150365i
\(155\) 82.3717i 0.531430i
\(156\) −78.3323 11.2500i −0.502130 0.0721157i
\(157\) 176.794 1.12608 0.563038 0.826431i \(-0.309632\pi\)
0.563038 + 0.826431i \(0.309632\pi\)
\(158\) −7.00202 26.1319i −0.0443166 0.165392i
\(159\) 51.3799 88.9926i 0.323144 0.559702i
\(160\) 33.1981 19.1669i 0.207488 0.119793i
\(161\) −19.5795 + 19.5795i −0.121612 + 0.121612i
\(162\) 113.799 + 30.4924i 0.702465 + 0.188225i
\(163\) 31.3812 117.116i 0.192523 0.718504i −0.800372 0.599504i \(-0.795365\pi\)
0.992894 0.119000i \(-0.0379688\pi\)
\(164\) −103.187 103.187i −0.629187 0.629187i
\(165\) −148.147 256.598i −0.897858 1.55514i
\(166\) 60.2269 + 34.7720i 0.362813 + 0.209470i
\(167\) 286.599 76.7939i 1.71616 0.459844i 0.739238 0.673444i \(-0.235186\pi\)
0.976921 + 0.213601i \(0.0685191\pi\)
\(168\) 37.9131i 0.225673i
\(169\) −162.169 47.5624i −0.959581 0.281434i
\(170\) −232.339 −1.36670
\(171\) −1.80141 6.72295i −0.0105346 0.0393155i
\(172\) −31.1417 + 53.9390i −0.181056 + 0.313599i
\(173\) −241.179 + 139.245i −1.39410 + 0.804884i −0.993766 0.111485i \(-0.964439\pi\)
−0.400334 + 0.916369i \(0.631106\pi\)
\(174\) −67.6380 + 67.6380i −0.388724 + 0.388724i
\(175\) −88.9978 23.8469i −0.508559 0.136268i
\(176\) −14.8720 + 55.5030i −0.0845000 + 0.315358i
\(177\) 81.2919 + 81.2919i 0.459276 + 0.459276i
\(178\) 2.54160 + 4.40219i 0.0142787 + 0.0247314i
\(179\) 68.2036 + 39.3774i 0.381026 + 0.219985i 0.678264 0.734818i \(-0.262732\pi\)
−0.297239 + 0.954803i \(0.596066\pi\)
\(180\) 3.45698 0.926294i 0.0192054 0.00514608i
\(181\) 200.758i 1.10916i −0.832130 0.554581i \(-0.812879\pi\)
0.832130 0.554581i \(-0.187121\pi\)
\(182\) 11.5102 80.1435i 0.0632427 0.440349i
\(183\) −70.2233 −0.383734
\(184\) 4.60271 + 17.1776i 0.0250147 + 0.0933563i
\(185\) −21.5356 + 37.3008i −0.116409 + 0.201626i
\(186\) 45.3123 26.1611i 0.243615 0.140651i
\(187\) 246.262 246.262i 1.31691 1.31691i
\(188\) −20.9176 5.60485i −0.111264 0.0298131i
\(189\) −30.3075 + 113.109i −0.160357 + 0.598460i
\(190\) 178.612 + 178.612i 0.940061 + 0.940061i
\(191\) −20.2650 35.1001i −0.106100 0.183770i 0.808087 0.589063i \(-0.200503\pi\)
−0.914187 + 0.405293i \(0.867170\pi\)
\(192\) −21.0873 12.1748i −0.109830 0.0634103i
\(193\) −140.149 + 37.5529i −0.726163 + 0.194575i −0.602920 0.797802i \(-0.705996\pi\)
−0.123243 + 0.992377i \(0.539329\pi\)
\(194\) 35.5934i 0.183471i
\(195\) 266.233 31.8740i 1.36530 0.163457i
\(196\) −59.2103 −0.302093
\(197\) −40.0731 149.555i −0.203417 0.759161i −0.989926 0.141583i \(-0.954781\pi\)
0.786510 0.617578i \(-0.211886\pi\)
\(198\) −2.68233 + 4.64594i −0.0135471 + 0.0234643i
\(199\) −225.470 + 130.175i −1.13302 + 0.654147i −0.944691 0.327960i \(-0.893639\pi\)
−0.188324 + 0.982107i \(0.560305\pi\)
\(200\) −41.8430 + 41.8430i −0.209215 + 0.209215i
\(201\) 316.404 + 84.7802i 1.57415 + 0.421792i
\(202\) 55.5671 207.379i 0.275084 1.02663i
\(203\) −69.2019 69.2019i −0.340896 0.340896i
\(204\) 73.7905 + 127.809i 0.361718 + 0.626514i
\(205\) 428.200 + 247.221i 2.08878 + 1.20596i
\(206\) −23.7241 + 6.35684i −0.115165 + 0.0308585i
\(207\) 1.66030i 0.00802079i
\(208\) −40.8798 32.1379i −0.196537 0.154509i
\(209\) −378.630 −1.81162
\(210\) 33.2478 + 124.083i 0.158323 + 0.590869i
\(211\) −208.203 + 360.618i −0.986744 + 1.70909i −0.352831 + 0.935687i \(0.614781\pi\)
−0.633913 + 0.773404i \(0.718552\pi\)
\(212\) 58.4767 33.7616i 0.275834 0.159253i
\(213\) −4.92110 + 4.92110i −0.0231037 + 0.0231037i
\(214\) −72.6626 19.4699i −0.339545 0.0909808i
\(215\) 54.6193 203.842i 0.254043 0.948103i
\(216\) 53.1790 + 53.1790i 0.246199 + 0.246199i
\(217\) 26.7660 + 46.3600i 0.123346 + 0.213641i
\(218\) 92.4532 + 53.3779i 0.424097 + 0.244853i
\(219\) −158.732 + 42.5322i −0.724805 + 0.194211i
\(220\) 194.693i 0.884969i
\(221\) 117.182 + 292.574i 0.530234 + 1.32386i
\(222\) 27.3587 0.123237
\(223\) 52.8772 + 197.340i 0.237118 + 0.884935i 0.977183 + 0.212400i \(0.0681279\pi\)
−0.740065 + 0.672535i \(0.765205\pi\)
\(224\) 12.4563 21.5749i 0.0556084 0.0963165i
\(225\) −4.78451 + 2.76234i −0.0212645 + 0.0122771i
\(226\) 36.2266 36.2266i 0.160295 0.160295i
\(227\) −107.452 28.7917i −0.473358 0.126836i 0.0142503 0.999898i \(-0.495464\pi\)
−0.487608 + 0.873063i \(0.662130\pi\)
\(228\) 41.5268 154.980i 0.182135 0.679738i
\(229\) −212.309 212.309i −0.927114 0.927114i 0.0704045 0.997519i \(-0.477571\pi\)
−0.997519 + 0.0704045i \(0.977571\pi\)
\(230\) −30.1277 52.1826i −0.130990 0.226881i
\(231\) −166.758 96.2780i −0.721898 0.416788i
\(232\) −60.7126 + 16.2679i −0.261692 + 0.0701202i
\(233\) 46.5826i 0.199925i −0.994991 0.0999627i \(-0.968128\pi\)
0.994991 0.0999627i \(-0.0318723\pi\)
\(234\) −2.90999 3.88603i −0.0124359 0.0166070i
\(235\) 73.3746 0.312233
\(236\) 19.5518 + 72.9685i 0.0828468 + 0.309188i
\(237\) 29.1127 50.4247i 0.122839 0.212763i
\(238\) −130.764 + 75.4966i −0.549429 + 0.317213i
\(239\) 138.309 138.309i 0.578698 0.578698i −0.355847 0.934544i \(-0.615808\pi\)
0.934544 + 0.355847i \(0.115808\pi\)
\(240\) 79.6916 + 21.3533i 0.332048 + 0.0889721i
\(241\) −58.1972 + 217.195i −0.241482 + 0.901223i 0.733637 + 0.679541i \(0.237821\pi\)
−0.975119 + 0.221682i \(0.928845\pi\)
\(242\) 85.3603 + 85.3603i 0.352728 + 0.352728i
\(243\) 7.12754 + 12.3453i 0.0293314 + 0.0508035i
\(244\) −39.9614 23.0717i −0.163776 0.0945563i
\(245\) 193.784 51.9244i 0.790957 0.211936i
\(246\) 314.068i 1.27670i
\(247\) 134.833 315.001i 0.545884 1.27531i
\(248\) 34.3807 0.138632
\(249\) 38.7384 + 144.574i 0.155576 + 0.580618i
\(250\) −19.5432 + 33.8498i −0.0781728 + 0.135399i
\(251\) 3.02255 1.74507i 0.0120420 0.00695247i −0.493967 0.869481i \(-0.664454\pi\)
0.506009 + 0.862528i \(0.331120\pi\)
\(252\) 1.64465 1.64465i 0.00652638 0.00652638i
\(253\) 87.2427 + 23.3766i 0.344833 + 0.0923977i
\(254\) 48.7125 181.798i 0.191781 0.715738i
\(255\) −353.584 353.584i −1.38661 1.38661i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −160.572 92.7065i −0.624795 0.360726i 0.153938 0.988080i \(-0.450804\pi\)
−0.778734 + 0.627355i \(0.784138\pi\)
\(258\) −129.480 + 34.6940i −0.501859 + 0.134473i
\(259\) 27.9913i 0.108074i
\(260\) 161.975 + 69.3320i 0.622982 + 0.266662i
\(261\) −5.86820 −0.0224835
\(262\) 14.0092 + 52.2831i 0.0534703 + 0.199554i
\(263\) 93.6758 162.251i 0.356182 0.616925i −0.631138 0.775671i \(-0.717412\pi\)
0.987319 + 0.158746i \(0.0507451\pi\)
\(264\) −107.100 + 61.8342i −0.405682 + 0.234221i
\(265\) −161.776 + 161.776i −0.610477 + 0.610477i
\(266\) 158.564 + 42.4870i 0.596104 + 0.159726i
\(267\) −2.83152 + 10.5674i −0.0106050 + 0.0395782i
\(268\) 152.199 + 152.199i 0.567907 + 0.567907i
\(269\) −172.006 297.923i −0.639427 1.10752i −0.985559 0.169334i \(-0.945838\pi\)
0.346132 0.938186i \(-0.387495\pi\)
\(270\) −220.680 127.410i −0.817335 0.471888i
\(271\) 23.4296 6.27795i 0.0864562 0.0231659i −0.215332 0.976541i \(-0.569083\pi\)
0.301788 + 0.953375i \(0.402417\pi\)
\(272\) 96.9749i 0.356525i
\(273\) 139.483 104.449i 0.510926 0.382598i
\(274\) 11.3635 0.0414725
\(275\) 77.7860 + 290.301i 0.282858 + 1.05564i
\(276\) −19.1370 + 33.1462i −0.0693369 + 0.120095i
\(277\) −428.588 + 247.446i −1.54725 + 0.893306i −0.548901 + 0.835888i \(0.684953\pi\)
−0.998350 + 0.0574180i \(0.981713\pi\)
\(278\) −243.961 + 243.961i −0.877558 + 0.877558i
\(279\) 3.10048 + 0.830770i 0.0111128 + 0.00297767i
\(280\) −21.8470 + 81.5342i −0.0780251 + 0.291194i
\(281\) 145.653 + 145.653i 0.518337 + 0.518337i 0.917068 0.398731i \(-0.130549\pi\)
−0.398731 + 0.917068i \(0.630549\pi\)
\(282\) −23.3036 40.3631i −0.0826370 0.143132i
\(283\) 372.577 + 215.107i 1.31653 + 0.760096i 0.983168 0.182704i \(-0.0584851\pi\)
0.333357 + 0.942801i \(0.391818\pi\)
\(284\) −4.41723 + 1.18359i −0.0155536 + 0.00416758i
\(285\) 543.639i 1.90750i
\(286\) −245.168 + 98.1949i −0.857232 + 0.343339i
\(287\) 321.330 1.11962
\(288\) −0.386621 1.44289i −0.00134244 0.00501004i
\(289\) 149.379 258.732i 0.516883 0.895267i
\(290\) 184.435 106.484i 0.635983 0.367185i
\(291\) 54.1677 54.1677i 0.186143 0.186143i
\(292\) −104.302 27.9477i −0.357200 0.0957114i
\(293\) 24.5565 91.6460i 0.0838105 0.312785i −0.911276 0.411797i \(-0.864901\pi\)
0.995086 + 0.0990115i \(0.0315681\pi\)
\(294\) −90.1090 90.1090i −0.306493 0.306493i
\(295\) −127.979 221.667i −0.433828 0.751412i
\(296\) 15.5688 + 8.98865i 0.0525973 + 0.0303671i
\(297\) 368.950 98.8597i 1.24225 0.332861i
\(298\) 267.473i 0.897559i
\(299\) −50.5161 + 64.2571i −0.168950 + 0.214907i
\(300\) −127.357 −0.424524
\(301\) −35.4962 132.474i −0.117927 0.440111i
\(302\) 70.5995 122.282i 0.233773 0.404907i
\(303\) 400.164 231.035i 1.32067 0.762490i
\(304\) 74.5498 74.5498i 0.245230 0.245230i
\(305\) 151.019 + 40.4655i 0.495145 + 0.132674i
\(306\) −2.34329 + 8.74526i −0.00765780 + 0.0285793i
\(307\) 210.306 + 210.306i 0.685035 + 0.685035i 0.961130 0.276095i \(-0.0890406\pi\)
−0.276095 + 0.961130i \(0.589041\pi\)
\(308\) −63.2639 109.576i −0.205402 0.355767i
\(309\) −45.7785 26.4302i −0.148151 0.0855347i
\(310\) −112.522 + 30.1501i −0.362974 + 0.0972585i
\(311\) 246.623i 0.793001i −0.918035 0.396500i \(-0.870225\pi\)
0.918035 0.396500i \(-0.129775\pi\)
\(312\) −13.3038 111.122i −0.0426402 0.356159i
\(313\) −118.526 −0.378679 −0.189339 0.981912i \(-0.560635\pi\)
−0.189339 + 0.981912i \(0.560635\pi\)
\(314\) 64.7111 + 241.505i 0.206086 + 0.769125i
\(315\) −3.94036 + 6.82490i −0.0125091 + 0.0216664i
\(316\) 33.1339 19.1299i 0.104854 0.0605376i
\(317\) −284.814 + 284.814i −0.898466 + 0.898466i −0.995300 0.0968348i \(-0.969128\pi\)
0.0968348 + 0.995300i \(0.469128\pi\)
\(318\) 140.372 + 37.6127i 0.441423 + 0.118279i
\(319\) −82.6227 + 308.352i −0.259005 + 0.966621i
\(320\) 38.3339 + 38.3339i 0.119793 + 0.119793i
\(321\) −80.9512 140.212i −0.252184 0.436796i
\(322\) −33.9126 19.5795i −0.105319 0.0608058i
\(323\) −617.227 + 165.385i −1.91092 + 0.512029i
\(324\) 166.614i 0.514240i
\(325\) −269.217 38.6648i −0.828360 0.118969i
\(326\) 171.470 0.525981
\(327\) 59.4666 + 221.933i 0.181855 + 0.678693i
\(328\) 103.187 178.724i 0.314593 0.544892i
\(329\) 41.2964 23.8425i 0.125521 0.0724695i
\(330\) 296.293 296.293i 0.897858 0.897858i
\(331\) −433.118 116.054i −1.30851 0.350615i −0.463850 0.885914i \(-0.653532\pi\)
−0.844663 + 0.535299i \(0.820199\pi\)
\(332\) −25.4549 + 94.9990i −0.0766714 + 0.286141i
\(333\) 1.18680 + 1.18680i 0.00356398 + 0.00356398i
\(334\) 209.805 + 363.392i 0.628158 + 1.08800i
\(335\) −631.591 364.649i −1.88535 1.08850i
\(336\) 51.7902 13.8772i 0.154138 0.0413010i
\(337\) 474.455i 1.40788i −0.710260 0.703939i \(-0.751423\pi\)
0.710260 0.703939i \(-0.248577\pi\)
\(338\) 5.61338 238.936i 0.0166076 0.706912i
\(339\) 110.263 0.325259
\(340\) −85.0420 317.381i −0.250124 0.933474i
\(341\) 87.3078 151.222i 0.256035 0.443465i
\(342\) 8.52436 4.92154i 0.0249250 0.0143905i
\(343\) 244.782 244.782i 0.713650 0.713650i
\(344\) −85.0807 22.7973i −0.247328 0.0662712i
\(345\) 33.5643 125.264i 0.0972878 0.363083i
\(346\) −278.490 278.490i −0.804884 0.804884i
\(347\) 266.818 + 462.142i 0.768927 + 1.33182i 0.938145 + 0.346242i \(0.112543\pi\)
−0.169218 + 0.985579i \(0.554124\pi\)
\(348\) −117.152 67.6380i −0.336645 0.194362i
\(349\) 260.973 69.9275i 0.747774 0.200365i 0.135244 0.990812i \(-0.456818\pi\)
0.612531 + 0.790447i \(0.290152\pi\)
\(350\) 130.302i 0.372291i
\(351\) −49.1398 + 342.153i −0.140000 + 0.974794i
\(352\) −81.2621 −0.230858
\(353\) −91.3587 340.955i −0.258806 0.965879i −0.965933 0.258792i \(-0.916676\pi\)
0.707127 0.707087i \(-0.249991\pi\)
\(354\) −81.2919 + 140.802i −0.229638 + 0.397745i
\(355\) 13.4188 7.74736i 0.0377995 0.0218236i
\(356\) −5.08321 + 5.08321i −0.0142787 + 0.0142787i
\(357\) −313.897 84.1085i −0.879263 0.235598i
\(358\) −28.8262 + 107.581i −0.0805202 + 0.300505i
\(359\) 116.092 + 116.092i 0.323375 + 0.323375i 0.850060 0.526685i \(-0.176565\pi\)
−0.526685 + 0.850060i \(0.676565\pi\)
\(360\) 2.53068 + 4.38327i 0.00702967 + 0.0121758i
\(361\) 289.001 + 166.855i 0.800556 + 0.462201i
\(362\) 274.241 73.4826i 0.757572 0.202991i
\(363\) 259.810i 0.715731i
\(364\) 113.691 13.6114i 0.312338 0.0373938i
\(365\) 365.871 1.00239
\(366\) −25.7035 95.9268i −0.0702282 0.262095i
\(367\) −343.162 + 594.375i −0.935047 + 1.61955i −0.160497 + 0.987036i \(0.551310\pi\)
−0.774550 + 0.632513i \(0.782024\pi\)
\(368\) −21.7803 + 12.5748i −0.0591855 + 0.0341708i
\(369\) 13.6241 13.6241i 0.0369217 0.0369217i
\(370\) −58.8364 15.7652i −0.159017 0.0426086i
\(371\) −38.4824 + 143.618i −0.103726 + 0.387111i
\(372\) 52.3222 + 52.3222i 0.140651 + 0.140651i
\(373\) 308.636 + 534.572i 0.827441 + 1.43317i 0.900039 + 0.435809i \(0.143538\pi\)
−0.0725981 + 0.997361i \(0.523129\pi\)
\(374\) 426.538 + 246.262i 1.14048 + 0.658455i
\(375\) −81.2560 + 21.7725i −0.216683 + 0.0580599i
\(376\) 30.6255i 0.0814508i
\(377\) −227.111 178.545i −0.602417 0.473594i
\(378\) −165.603 −0.438103
\(379\) −138.900 518.382i −0.366491 1.36776i −0.865389 0.501101i \(-0.832928\pi\)
0.498898 0.866661i \(-0.333738\pi\)
\(380\) −178.612 + 309.364i −0.470030 + 0.814116i
\(381\) 350.801 202.535i 0.920737 0.531588i
\(382\) 40.5301 40.5301i 0.106100 0.106100i
\(383\) −253.061 67.8074i −0.660732 0.177043i −0.0871559 0.996195i \(-0.527778\pi\)
−0.573577 + 0.819152i \(0.694444\pi\)
\(384\) 8.91255 33.2621i 0.0232098 0.0866200i
\(385\) 303.144 + 303.144i 0.787387 + 0.787387i
\(386\) −102.596 177.702i −0.265794 0.460369i
\(387\) −7.12176 4.11175i −0.0184025 0.0106247i
\(388\) 48.6215 13.0281i 0.125313 0.0335775i
\(389\) 184.591i 0.474527i 0.971445 + 0.237264i \(0.0762505\pi\)
−0.971445 + 0.237264i \(0.923749\pi\)
\(390\) 140.989 + 352.014i 0.361510 + 0.902601i
\(391\) 152.431 0.389848
\(392\) −21.6725 80.8828i −0.0552869 0.206334i
\(393\) −58.2469 + 100.887i −0.148211 + 0.256709i
\(394\) 189.628 109.482i 0.481289 0.277872i
\(395\) −91.6653 + 91.6653i −0.232064 + 0.232064i
\(396\) −7.32827 1.96360i −0.0185057 0.00495860i
\(397\) 65.7046 245.213i 0.165503 0.617664i −0.832473 0.554066i \(-0.813076\pi\)
0.997976 0.0635986i \(-0.0202578\pi\)
\(398\) −260.350 260.350i −0.654147 0.654147i
\(399\) 176.651 + 305.968i 0.442734 + 0.766838i
\(400\) −72.4741 41.8430i −0.181185 0.104607i
\(401\) −261.805 + 70.1504i −0.652880 + 0.174939i −0.570031 0.821623i \(-0.693069\pi\)
−0.0828492 + 0.996562i \(0.526402\pi\)
\(402\) 463.248i 1.15236i
\(403\) 94.7178 + 126.487i 0.235032 + 0.313864i
\(404\) 303.624 0.751545
\(405\) −146.112 545.296i −0.360770 1.34641i
\(406\) 69.2019 119.861i 0.170448 0.295225i
\(407\) 79.0721 45.6523i 0.194280 0.112168i
\(408\) −147.581 + 147.581i −0.361718 + 0.361718i
\(409\) 152.496 + 40.8612i 0.372851 + 0.0999051i 0.440378 0.897812i \(-0.354844\pi\)
−0.0675274 + 0.997717i \(0.521511\pi\)
\(410\) −180.979 + 675.422i −0.441411 + 1.64737i
\(411\) 17.2935 + 17.2935i 0.0420766 + 0.0420766i
\(412\) −17.3672 30.0809i −0.0421534 0.0730119i
\(413\) −144.057 83.1715i −0.348807 0.201384i
\(414\) −2.26802 + 0.607713i −0.00547830 + 0.00146791i
\(415\) 333.237i 0.802980i
\(416\) 28.9382 67.6061i 0.0695629 0.162515i
\(417\) −742.543 −1.78068
\(418\) −138.588 517.218i −0.331550 1.23736i
\(419\) 326.238 565.061i 0.778611 1.34859i −0.154132 0.988050i \(-0.549258\pi\)
0.932743 0.360543i \(-0.117409\pi\)
\(420\) −157.330 + 90.8347i −0.374596 + 0.216273i
\(421\) 294.576 294.576i 0.699704 0.699704i −0.264642 0.964347i \(-0.585254\pi\)
0.964347 + 0.264642i \(0.0852538\pi\)
\(422\) −568.821 152.415i −1.34792 0.361173i
\(423\) 0.740029 2.76183i 0.00174948 0.00652914i
\(424\) 67.5231 + 67.5231i 0.159253 + 0.159253i
\(425\) 253.607 + 439.261i 0.596723 + 1.03355i
\(426\) −8.52359 4.92110i −0.0200084 0.0115519i
\(427\) 98.1448 26.2978i 0.229847 0.0615874i
\(428\) 106.385i 0.248564i
\(429\) −522.546 223.671i −1.21806 0.521378i
\(430\) 298.445 0.694059
\(431\) 18.2792 + 68.2190i 0.0424112 + 0.158281i 0.983884 0.178808i \(-0.0572243\pi\)
−0.941473 + 0.337089i \(0.890558\pi\)
\(432\) −53.1790 + 92.1087i −0.123100 + 0.213215i
\(433\) 404.363 233.459i 0.933864 0.539167i 0.0458326 0.998949i \(-0.485406\pi\)
0.888032 + 0.459782i \(0.152073\pi\)
\(434\) −53.5320 + 53.5320i −0.123346 + 0.123346i
\(435\) 442.734 + 118.630i 1.01778 + 0.272713i
\(436\) −39.0753 + 145.831i −0.0896223 + 0.334475i
\(437\) −117.182 117.182i −0.268150 0.268150i
\(438\) −116.200 201.264i −0.265297 0.459508i
\(439\) 103.577 + 59.8002i 0.235938 + 0.136219i 0.613309 0.789843i \(-0.289838\pi\)
−0.377370 + 0.926063i \(0.623172\pi\)
\(440\) 265.956 71.2627i 0.604445 0.161961i
\(441\) 7.81775i 0.0177273i
\(442\) −356.772 + 267.163i −0.807177 + 0.604441i
\(443\) −56.7213 −0.128039 −0.0640195 0.997949i \(-0.520392\pi\)
−0.0640195 + 0.997949i \(0.520392\pi\)
\(444\) 10.0140 + 37.3727i 0.0225540 + 0.0841727i
\(445\) 12.1787 21.0941i 0.0273679 0.0474025i
\(446\) −250.218 + 144.463i −0.561026 + 0.323909i
\(447\) −407.052 + 407.052i −0.910631 + 0.910631i
\(448\) 34.0312 + 9.11863i 0.0759625 + 0.0203541i
\(449\) 47.8299 178.504i 0.106525 0.397558i −0.891988 0.452058i \(-0.850690\pi\)
0.998514 + 0.0545000i \(0.0173565\pi\)
\(450\) −5.52468 5.52468i −0.0122771 0.0122771i
\(451\) −524.072 907.720i −1.16202 2.01268i
\(452\) 62.7464 + 36.2266i 0.138819 + 0.0801474i
\(453\) 293.536 78.6527i 0.647982 0.173626i
\(454\) 157.321i 0.346522i
\(455\) −360.153 + 144.249i −0.791546 + 0.317030i
\(456\) 226.907 0.497603
\(457\) 76.6418 + 286.031i 0.167706 + 0.625889i 0.997680 + 0.0680852i \(0.0216890\pi\)
−0.829973 + 0.557803i \(0.811644\pi\)
\(458\) 212.309 367.730i 0.463557 0.802904i
\(459\) 558.265 322.314i 1.21626 0.702210i
\(460\) 60.2553 60.2553i 0.130990 0.130990i
\(461\) 596.206 + 159.753i 1.29329 + 0.346535i 0.838908 0.544273i \(-0.183194\pi\)
0.454379 + 0.890808i \(0.349861\pi\)
\(462\) 70.4804 263.036i 0.152555 0.569343i
\(463\) 198.699 + 198.699i 0.429156 + 0.429156i 0.888341 0.459185i \(-0.151858\pi\)
−0.459185 + 0.888341i \(0.651858\pi\)
\(464\) −44.4447 76.9805i −0.0957860 0.165906i
\(465\) −217.125 125.357i −0.466935 0.269585i
\(466\) 63.6330 17.0504i 0.136552 0.0365889i
\(467\) 522.015i 1.11781i 0.829233 + 0.558903i \(0.188777\pi\)
−0.829233 + 0.558903i \(0.811223\pi\)
\(468\) 4.24329 5.39751i 0.00906685 0.0115331i
\(469\) −473.959 −1.01057
\(470\) 26.8570 + 100.232i 0.0571425 + 0.213259i
\(471\) −269.053 + 466.014i −0.571239 + 0.989414i
\(472\) −92.5203 + 53.4166i −0.196018 + 0.113171i
\(473\) −316.330 + 316.330i −0.668773 + 0.668773i
\(474\) 79.5374 + 21.3120i 0.167801 + 0.0449620i
\(475\) 142.722 532.645i 0.300467 1.12136i
\(476\) −150.993 150.993i −0.317213 0.317213i
\(477\) 4.45766 + 7.72090i 0.00934520 + 0.0161864i
\(478\) 239.558 + 138.309i 0.501167 + 0.289349i
\(479\) 327.970 87.8794i 0.684698 0.183464i 0.100331 0.994954i \(-0.468010\pi\)
0.584367 + 0.811490i \(0.301343\pi\)
\(480\) 116.677i 0.243076i
\(481\) 9.82218 + 82.0413i 0.0204203 + 0.170564i
\(482\) −317.995 −0.659741
\(483\) −21.8129 81.4067i −0.0451612 0.168544i
\(484\) −85.3603 + 147.848i −0.176364 + 0.305472i
\(485\) −147.704 + 85.2771i −0.304545 + 0.175829i
\(486\) −14.2551 + 14.2551i −0.0293314 + 0.0293314i
\(487\) 208.431 + 55.8489i 0.427990 + 0.114679i 0.466382 0.884583i \(-0.345557\pi\)
−0.0383927 + 0.999263i \(0.512224\pi\)
\(488\) 16.8897 63.0332i 0.0346100 0.129166i
\(489\) 260.951 + 260.951i 0.533642 + 0.533642i
\(490\) 141.860 + 245.709i 0.289510 + 0.501447i
\(491\) −480.847 277.617i −0.979322 0.565412i −0.0772564 0.997011i \(-0.524616\pi\)
−0.902065 + 0.431600i \(0.857949\pi\)
\(492\) 429.025 114.957i 0.872003 0.233652i
\(493\) 538.753i 1.09280i
\(494\) 479.652 + 68.8874i 0.970956 + 0.139448i
\(495\) 25.7061 0.0519315
\(496\) 12.5842 + 46.9649i 0.0253714 + 0.0946874i
\(497\) 5.03488 8.72067i 0.0101305 0.0175466i
\(498\) −183.312 + 105.835i −0.368097 + 0.212521i
\(499\) −401.619 + 401.619i −0.804847 + 0.804847i −0.983849 0.179002i \(-0.942713\pi\)
0.179002 + 0.983849i \(0.442713\pi\)
\(500\) −53.3930 14.3066i −0.106786 0.0286132i
\(501\) −233.737 + 872.318i −0.466541 + 1.74115i
\(502\) 3.49014 + 3.49014i 0.00695247 + 0.00695247i
\(503\) 196.833 + 340.925i 0.391319 + 0.677784i 0.992624 0.121236i \(-0.0386857\pi\)
−0.601305 + 0.799020i \(0.705352\pi\)
\(504\) 2.84861 + 1.64465i 0.00565201 + 0.00326319i
\(505\) −993.706 + 266.263i −1.96773 + 0.527253i
\(506\) 127.732i 0.252435i
\(507\) 372.167 355.081i 0.734057 0.700358i
\(508\) 266.170 0.523957
\(509\) 113.097 + 422.083i 0.222194 + 0.829239i 0.983509 + 0.180858i \(0.0578873\pi\)
−0.761315 + 0.648382i \(0.775446\pi\)
\(510\) 353.584 612.426i 0.693303 1.20084i
\(511\) 205.918 118.887i 0.402971 0.232655i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −676.948 181.388i −1.31959 0.353582i
\(514\) 67.8659 253.279i 0.132035 0.492761i
\(515\) 83.2191 + 83.2191i 0.161591 + 0.161591i
\(516\) −94.7857 164.174i −0.183693 0.318166i
\(517\) −134.704 77.7716i −0.260550 0.150429i
\(518\) −38.2368 + 10.2455i −0.0738162 + 0.0197790i
\(519\) 847.638i 1.63321i
\(520\) −35.4223 + 246.640i −0.0681198 + 0.474307i
\(521\) 947.876 1.81934 0.909669 0.415333i \(-0.136335\pi\)
0.909669 + 0.415333i \(0.136335\pi\)
\(522\) −2.14791 8.01611i −0.00411477 0.0153565i
\(523\) 68.3466 118.380i 0.130682 0.226348i −0.793258 0.608886i \(-0.791617\pi\)
0.923940 + 0.382538i \(0.124950\pi\)
\(524\) −66.2923 + 38.2739i −0.126512 + 0.0730417i
\(525\) 198.299 198.299i 0.377713 0.377713i
\(526\) 255.927 + 68.5754i 0.486553 + 0.130372i
\(527\) 76.2721 284.651i 0.144729 0.540135i
\(528\) −123.668 123.668i −0.234221 0.234221i
\(529\) −244.734 423.892i −0.462635 0.801308i
\(530\) −280.205 161.776i −0.528689 0.305239i
\(531\) −9.63430 + 2.58150i −0.0181437 + 0.00486159i
\(532\) 232.153i 0.436378i
\(533\) 941.806 112.755i 1.76699 0.211548i
\(534\) −15.4717 −0.0289733
\(535\) 93.2946 + 348.180i 0.174382 + 0.650804i
\(536\) −152.199 + 263.617i −0.283954 + 0.491822i
\(537\) −207.591 + 119.853i −0.386575 + 0.223189i
\(538\) 344.012 344.012i 0.639427 0.639427i
\(539\) −410.794 110.072i −0.762141 0.204215i
\(540\) 93.2705 348.090i 0.172723 0.644612i
\(541\) −394.763 394.763i −0.729691 0.729691i 0.240867 0.970558i \(-0.422568\pi\)
−0.970558 + 0.240867i \(0.922568\pi\)
\(542\) 17.1517 + 29.7076i 0.0316452 + 0.0548110i
\(543\) 529.182 + 305.523i 0.974552 + 0.562658i
\(544\) −132.470 + 35.4953i −0.243511 + 0.0652487i
\(545\) 511.545i 0.938616i
\(546\) 193.735 + 152.306i 0.354825 + 0.278949i
\(547\) −716.303 −1.30951 −0.654756 0.755840i \(-0.727229\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(548\) 4.15932 + 15.5228i 0.00759000 + 0.0283263i
\(549\) 3.04625 5.27625i 0.00554872 0.00961066i
\(550\) −368.087 + 212.515i −0.669250 + 0.386392i
\(551\) 414.168 414.168i 0.751666 0.751666i
\(552\) −52.2832 14.0092i −0.0947159 0.0253791i
\(553\) −21.8048 + 81.3765i −0.0394300 + 0.147155i
\(554\) −494.891 494.891i −0.893306 0.893306i
\(555\) −65.5478 113.532i −0.118104 0.204562i
\(556\) −422.553 243.961i −0.759988 0.438779i
\(557\) −58.2268 + 15.6018i −0.104536 + 0.0280104i −0.310708 0.950505i \(-0.600566\pi\)
0.206172 + 0.978516i \(0.433899\pi\)
\(558\) 4.53941i 0.00813515i
\(559\) −150.523 375.819i −0.269272 0.672306i
\(560\) −119.374 −0.213169
\(561\) 274.353 + 1023.90i 0.489043 + 1.82513i
\(562\) −145.653 + 252.278i −0.259168 + 0.448893i
\(563\) −233.194 + 134.635i −0.414199 + 0.239138i −0.692592 0.721329i \(-0.743531\pi\)
0.278393 + 0.960467i \(0.410198\pi\)
\(564\) 46.6073 46.6073i 0.0826370 0.0826370i
\(565\) −237.126 63.5378i −0.419693 0.112456i
\(566\) −157.469 + 587.684i −0.278215 + 1.03831i
\(567\) −259.423 259.423i −0.457537 0.457537i
\(568\) −3.23364 5.60082i −0.00569302 0.00986060i
\(569\) 232.943 + 134.490i 0.409390 + 0.236361i 0.690528 0.723306i \(-0.257378\pi\)
−0.281138 + 0.959667i \(0.590712\pi\)
\(570\) −742.624 + 198.986i −1.30285 + 0.349097i
\(571\) 328.719i 0.575689i −0.957677 0.287845i \(-0.907061\pi\)
0.957677 0.287845i \(-0.0929387\pi\)
\(572\) −223.875 298.964i −0.391389 0.522665i
\(573\) 123.361 0.215290
\(574\) 117.615 + 438.945i 0.204904 + 0.764713i
\(575\) −65.7711 + 113.919i −0.114384 + 0.198120i
\(576\) 1.82951 1.05627i 0.00317624 0.00183380i
\(577\) −18.1490 + 18.1490i −0.0314540 + 0.0314540i −0.722659 0.691205i \(-0.757080\pi\)
0.691205 + 0.722659i \(0.257080\pi\)
\(578\) 408.111 + 109.353i 0.706075 + 0.189192i
\(579\) 114.300 426.572i 0.197409 0.736739i
\(580\) 212.967 + 212.967i 0.367185 + 0.367185i
\(581\) −108.283 187.551i −0.186373 0.322807i
\(582\) 93.8212 + 54.1677i 0.161205 + 0.0930716i
\(583\) 468.467 125.525i 0.803546 0.215309i
\(584\) 152.709i 0.261488i
\(585\) −9.15417 + 21.3862i −0.0156481 + 0.0365576i
\(586\) 134.179 0.228975
\(587\) −30.1430 112.495i −0.0513509 0.191644i 0.935486 0.353364i \(-0.114962\pi\)
−0.986837 + 0.161720i \(0.948296\pi\)
\(588\) 90.1090 156.073i 0.153247 0.265431i
\(589\) −277.461 + 160.192i −0.471072 + 0.271973i
\(590\) 255.958 255.958i 0.433828 0.433828i
\(591\) 455.199 + 121.970i 0.770218 + 0.206379i
\(592\) −6.58015 + 24.5574i −0.0111151 + 0.0414822i
\(593\) 215.404 + 215.404i 0.363244 + 0.363244i 0.865006 0.501762i \(-0.167315\pi\)
−0.501762 + 0.865006i \(0.667315\pi\)
\(594\) 270.090 + 467.809i 0.454697 + 0.787558i
\(595\) 626.587 + 361.760i 1.05309 + 0.608000i
\(596\) −365.374 + 97.9017i −0.613044 + 0.164265i
\(597\) 792.427i 1.32735i
\(598\) −106.267 45.4866i −0.177704 0.0760646i
\(599\) −657.704 −1.09800 −0.549002 0.835821i \(-0.684992\pi\)
−0.549002 + 0.835821i \(0.684992\pi\)
\(600\) −46.6159 173.973i −0.0776932 0.289955i
\(601\) −149.567 + 259.057i −0.248863 + 0.431044i −0.963211 0.268747i \(-0.913390\pi\)
0.714347 + 0.699791i \(0.246724\pi\)
\(602\) 167.970 96.9774i 0.279019 0.161092i
\(603\) −20.0954 + 20.0954i −0.0333257 + 0.0333257i
\(604\) 192.881 + 51.6824i 0.319340 + 0.0855669i
\(605\) 149.713 558.737i 0.247460 0.923532i
\(606\) 462.069 + 462.069i 0.762490 + 0.762490i
\(607\) 355.980 + 616.576i 0.586459 + 1.01578i 0.994692 + 0.102898i \(0.0328116\pi\)
−0.408233 + 0.912878i \(0.633855\pi\)
\(608\) 129.124 + 74.5498i 0.212375 + 0.122615i
\(609\) 287.725 77.0957i 0.472455 0.126594i
\(610\) 221.107i 0.362471i
\(611\) 112.672 84.3723i 0.184405 0.138089i
\(612\) −12.8040 −0.0209215
\(613\) 189.142 + 705.887i 0.308551 + 1.15153i 0.929845 + 0.367951i \(0.119941\pi\)
−0.621294 + 0.783578i \(0.713393\pi\)
\(614\) −210.306 + 364.260i −0.342517 + 0.593257i
\(615\) −1303.31 + 752.466i −2.11920 + 1.22352i
\(616\) 126.528 126.528i 0.205402 0.205402i
\(617\) 338.746 + 90.7668i 0.549021 + 0.147110i 0.522658 0.852543i \(-0.324941\pi\)
0.0263636 + 0.999652i \(0.491607\pi\)
\(618\) 19.3483 72.2087i 0.0313079 0.116843i
\(619\) 283.795 + 283.795i 0.458474 + 0.458474i 0.898154 0.439680i \(-0.144908\pi\)
−0.439680 + 0.898154i \(0.644908\pi\)
\(620\) −82.3717 142.672i −0.132858 0.230116i
\(621\) 144.782 + 83.5897i 0.233143 + 0.134605i
\(622\) 336.894 90.2704i 0.541630 0.145129i
\(623\) 15.8295i 0.0254084i
\(624\) 146.926 58.8466i 0.235458 0.0943055i
\(625\) 710.329 1.13653
\(626\) −43.3837 161.910i −0.0693030 0.258642i
\(627\) 576.216 998.036i 0.919005 1.59176i
\(628\) −306.216 + 176.794i −0.487606 + 0.281519i
\(629\) 108.959 108.959i 0.173226 0.173226i
\(630\) −10.7653 2.88454i −0.0170877 0.00457864i
\(631\) −298.859 + 1115.36i −0.473627 + 1.76760i 0.152944 + 0.988235i \(0.451125\pi\)
−0.626570 + 0.779365i \(0.715542\pi\)
\(632\) 38.2597 + 38.2597i 0.0605376 + 0.0605376i
\(633\) −633.706 1097.61i −1.00112 1.73398i
\(634\) −493.312 284.814i −0.778094 0.449233i
\(635\) −871.126 + 233.417i −1.37185 + 0.367587i
\(636\) 205.520i 0.323144i
\(637\) 237.862 302.563i 0.373410 0.474981i
\(638\) −451.459 −0.707615
\(639\) −0.156274 0.583223i −0.000244560 0.000912712i
\(640\) −38.3339 + 66.3963i −0.0598967 + 0.103744i
\(641\) 225.174 130.005i 0.351286 0.202815i −0.313965 0.949434i \(-0.601658\pi\)
0.665252 + 0.746619i \(0.268324\pi\)
\(642\) 161.902 161.902i 0.252184 0.252184i
\(643\) 11.9154 + 3.19272i 0.0185309 + 0.00496535i 0.268073 0.963399i \(-0.413613\pi\)
−0.249542 + 0.968364i \(0.580280\pi\)
\(644\) 14.3332 53.4921i 0.0222565 0.0830622i
\(645\) 454.188 + 454.188i 0.704168 + 0.704168i
\(646\) −451.841 782.612i −0.699445 1.21147i
\(647\) 822.864 + 475.081i 1.27182 + 0.734283i 0.975329 0.220755i \(-0.0708520\pi\)
0.296486 + 0.955037i \(0.404185\pi\)
\(648\) −227.599 + 60.9849i −0.351232 + 0.0941124i
\(649\) 542.593i 0.836045i
\(650\) −45.7231 381.909i −0.0703432 0.587553i
\(651\) −162.935 −0.250284
\(652\) 62.7624 + 234.232i 0.0962613 + 0.359252i
\(653\) −282.884 + 489.970i −0.433207 + 0.750336i −0.997147 0.0754792i \(-0.975951\pi\)
0.563941 + 0.825815i \(0.309285\pi\)
\(654\) −281.399 + 162.466i −0.430274 + 0.248419i
\(655\) 183.398 183.398i 0.279997 0.279997i
\(656\) 281.911 + 75.5378i 0.429742 + 0.115149i
\(657\) 3.69004 13.7714i 0.00561650 0.0209611i
\(658\) 47.6849 + 47.6849i 0.0724695 + 0.0724695i
\(659\) −190.174 329.390i −0.288579 0.499833i 0.684892 0.728645i \(-0.259849\pi\)
−0.973471 + 0.228811i \(0.926516\pi\)
\(660\) 513.195 + 296.293i 0.777568 + 0.448929i
\(661\) −960.224 + 257.291i −1.45268 + 0.389245i −0.896956 0.442119i \(-0.854227\pi\)
−0.555728 + 0.831364i \(0.687560\pi\)
\(662\) 634.128i 0.957898i
\(663\) −949.533 136.372i −1.43218 0.205689i
\(664\) −139.088 −0.209470
\(665\) −203.586 759.795i −0.306145 1.14255i
\(666\) −1.18680 + 2.05561i −0.00178199 + 0.00308650i
\(667\) −121.002 + 69.8606i −0.181413 + 0.104739i
\(668\) −419.609 + 419.609i −0.628158 + 0.628158i
\(669\) −600.644 160.942i −0.897823 0.240571i
\(670\) 266.942 996.240i 0.398420 1.48693i
\(671\) −234.357 234.357i −0.349266 0.349266i
\(672\) 37.9131 + 65.6674i 0.0564183 + 0.0977193i
\(673\) −548.632 316.753i −0.815204 0.470658i 0.0335560 0.999437i \(-0.489317\pi\)
−0.848760 + 0.528779i \(0.822650\pi\)
\(674\) 648.117 173.663i 0.961599 0.257660i
\(675\) 556.292i 0.824136i
\(676\) 328.448 79.7887i 0.485869 0.118031i
\(677\) −221.745 −0.327540 −0.163770 0.986499i \(-0.552366\pi\)
−0.163770 + 0.986499i \(0.552366\pi\)
\(678\) 40.3590 + 150.622i 0.0595265 + 0.222156i
\(679\) −55.4201 + 95.9905i −0.0816202 + 0.141370i
\(680\) 402.423 232.339i 0.591799 0.341675i
\(681\) 239.418 239.418i 0.351569 0.351569i
\(682\) 238.529 + 63.9137i 0.349750 + 0.0937152i
\(683\) 173.007 645.671i 0.253304 0.945345i −0.715722 0.698386i \(-0.753902\pi\)
0.969026 0.246959i \(-0.0794313\pi\)
\(684\) 9.84309 + 9.84309i 0.0143905 + 0.0143905i
\(685\) −27.2254 47.1558i −0.0397451 0.0688405i
\(686\) 423.975 + 244.782i 0.618039 + 0.356825i
\(687\) 882.731 236.527i 1.28491 0.344290i
\(688\) 124.567i 0.181056i
\(689\) −62.3944 + 434.443i −0.0905580 + 0.630541i
\(690\) 183.399 0.265795
\(691\) −146.869 548.121i −0.212545 0.793229i −0.987016 0.160620i \(-0.948651\pi\)
0.774471 0.632609i \(-0.218016\pi\)
\(692\) 278.490 482.359i 0.402442 0.697050i
\(693\) 14.4678 8.35297i 0.0208770 0.0120534i
\(694\) −533.636 + 533.636i −0.768927 + 0.768927i
\(695\) 1596.88 + 427.883i 2.29767 + 0.615659i
\(696\) 49.5145 184.790i 0.0711415 0.265504i
\(697\) −1250.81 1250.81i −1.79457 1.79457i
\(698\) 191.046 + 330.901i 0.273704 + 0.474070i
\(699\) 122.788 + 70.8916i 0.175662 + 0.101419i
\(700\) 177.996 47.6938i 0.254280 0.0681340i
\(701\) 597.453i 0.852287i −0.904656 0.426143i \(-0.859872\pi\)
0.904656 0.426143i \(-0.140128\pi\)
\(702\) −485.376 + 58.1103i −0.691418 + 0.0827783i
\(703\) −167.526 −0.238301
\(704\) −29.7440 111.006i −0.0422500 0.157679i
\(705\) −111.665 + 193.409i −0.158390 + 0.274339i
\(706\) 432.314 249.596i 0.612342 0.353536i
\(707\) −472.753 + 472.753i −0.668675 + 0.668675i
\(708\) −222.094 59.5098i −0.313692 0.0840534i
\(709\) −10.2632 + 38.3029i −0.0144757 + 0.0540239i −0.972786 0.231706i \(-0.925569\pi\)
0.958310 + 0.285730i \(0.0922360\pi\)
\(710\) 15.4947 + 15.4947i 0.0218236 + 0.0218236i
\(711\) 2.52579 + 4.37479i 0.00355244 + 0.00615301i
\(712\) −8.80437 5.08321i −0.0123657 0.00713934i
\(713\) 73.8221 19.7806i 0.103537 0.0277427i
\(714\) 459.577i 0.643666i
\(715\) 994.877 + 782.129i 1.39144 + 1.09389i
\(716\) −157.509 −0.219985
\(717\) 154.085 + 575.055i 0.214903 + 0.802029i
\(718\) −116.092 + 201.077i −0.161688 + 0.280051i
\(719\) −864.778 + 499.280i −1.20275 + 0.694409i −0.961166 0.275971i \(-0.911001\pi\)
−0.241585 + 0.970380i \(0.577667\pi\)
\(720\) −5.06137 + 5.06137i −0.00702967 + 0.00702967i
\(721\) 73.8783 + 19.7956i 0.102466 + 0.0274558i
\(722\) −122.146 + 455.855i −0.169177 + 0.631379i
\(723\) −483.940 483.940i −0.669350 0.669350i
\(724\) 200.758 + 347.724i 0.277290 + 0.480281i
\(725\) −402.636 232.462i −0.555360 0.320638i
\(726\) −354.908 + 95.0972i −0.488854 + 0.130988i
\(727\) 685.178i 0.942473i 0.882007 + 0.471237i \(0.156192\pi\)
−0.882007 + 0.471237i \(0.843808\pi\)
\(728\) 60.2073 + 150.323i 0.0827023 + 0.206487i
\(729\) 706.374 0.968963
\(730\) 133.918 + 499.789i 0.183450 + 0.684643i
\(731\) −377.495 + 653.841i −0.516409 + 0.894447i
\(732\) 121.630 70.2233i 0.166162 0.0959334i
\(733\) 176.253 176.253i 0.240454 0.240454i −0.576584 0.817038i \(-0.695615\pi\)
0.817038 + 0.576584i \(0.195615\pi\)
\(734\) −937.537 251.212i −1.27730 0.342251i
\(735\) −158.042 + 589.820i −0.215023 + 0.802477i
\(736\) −25.1497 25.1497i −0.0341708 0.0341708i
\(737\) 773.001 + 1338.88i 1.04885 + 1.81666i
\(738\) 23.5976 + 13.6241i 0.0319751 + 0.0184608i
\(739\) 1337.69 358.434i 1.81014 0.485026i 0.814655 0.579946i \(-0.196926\pi\)
0.995485 + 0.0949200i \(0.0302595\pi\)
\(740\) 86.1425i 0.116409i
\(741\) 625.121 + 834.793i 0.843618 + 1.12658i
\(742\) −210.272 −0.283385
\(743\) −150.945 563.335i −0.203156 0.758190i −0.990004 0.141042i \(-0.954955\pi\)
0.786847 0.617148i \(-0.211712\pi\)
\(744\) −52.3222 + 90.6247i −0.0703255 + 0.121807i
\(745\) 1109.95 640.829i 1.48986 0.860173i
\(746\) −617.271 + 617.271i −0.827441 + 0.827441i
\(747\) −12.5431 3.36090i −0.0167912 0.00449920i
\(748\) −180.276 + 672.800i −0.241011 + 0.899466i
\(749\) 165.646 + 165.646i 0.221156 + 0.221156i
\(750\) −59.4835 103.028i −0.0793113 0.137371i
\(751\) −1012.32 584.461i −1.34796 0.778244i −0.359998 0.932953i \(-0.617223\pi\)
−0.987960 + 0.154709i \(0.950556\pi\)
\(752\) 41.8352 11.2097i 0.0556319 0.0149065i
\(753\) 10.6229i 0.0141075i
\(754\) 160.769 375.591i 0.213221 0.498132i
\(755\) −676.588 −0.896143
\(756\) −60.6149 226.218i −0.0801785 0.299230i
\(757\) 561.343 972.275i 0.741537 1.28438i −0.210259 0.977646i \(-0.567431\pi\)
0.951796 0.306733i \(-0.0992360\pi\)
\(758\) 657.282 379.482i 0.867126 0.500636i
\(759\) −194.389 + 194.389i −0.256112 + 0.256112i
\(760\) −487.976 130.753i −0.642073 0.172043i
\(761\) 246.221 918.907i 0.323549 1.20750i −0.592214 0.805781i \(-0.701746\pi\)
0.915763 0.401719i \(-0.131587\pi\)
\(762\) 405.070 + 405.070i 0.531588 + 0.531588i
\(763\) −166.222 287.906i −0.217854 0.377334i
\(764\) 70.2001 +