Properties

Label 26.3.f.a.19.1
Level $26$
Weight $3$
Character 26.19
Analytic conductor $0.708$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,3,Mod(7,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 26.f (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.708448687337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 26.19
Dual form 26.3.f.a.11.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(0.866025 - 1.50000i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(1.73205 - 1.73205i) q^{5} +(-2.36603 - 0.633975i) q^{6} +(-2.03590 + 7.59808i) q^{7} +(2.00000 + 2.00000i) q^{8} +(3.00000 + 5.19615i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(0.866025 - 1.50000i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(1.73205 - 1.73205i) q^{5} +(-2.36603 - 0.633975i) q^{6} +(-2.03590 + 7.59808i) q^{7} +(2.00000 + 2.00000i) q^{8} +(3.00000 + 5.19615i) q^{9} +(-3.00000 - 1.73205i) q^{10} +(-4.96410 + 1.33013i) q^{11} +3.46410i q^{12} +(-9.92820 - 8.39230i) q^{13} +11.1244 q^{14} +(-1.09808 - 4.09808i) q^{15} +(2.00000 - 3.46410i) q^{16} +(24.6962 - 14.2583i) q^{17} +(6.00000 - 6.00000i) q^{18} +(-24.8923 - 6.66987i) q^{19} +(-1.26795 + 4.73205i) q^{20} +(9.63397 + 9.63397i) q^{21} +(3.63397 + 6.29423i) q^{22} +(-15.1865 - 8.76795i) q^{23} +(4.73205 - 1.26795i) q^{24} +19.0000i q^{25} +(-7.83013 + 16.6340i) q^{26} +25.9808 q^{27} +(-4.07180 - 15.1962i) q^{28} +(0.356406 - 0.617314i) q^{29} +(-5.19615 + 3.00000i) q^{30} +(-23.3397 + 23.3397i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-2.30385 + 8.59808i) q^{33} +(-28.5167 - 28.5167i) q^{34} +(9.63397 + 16.6865i) q^{35} +(-10.3923 - 6.00000i) q^{36} +(21.2583 - 5.69615i) q^{37} +36.4449i q^{38} +(-21.1865 + 7.62436i) q^{39} +6.92820 q^{40} +(-11.2583 - 42.0167i) q^{41} +(9.63397 - 16.6865i) q^{42} +(63.7750 - 36.8205i) q^{43} +(7.26795 - 7.26795i) q^{44} +(14.1962 + 3.80385i) q^{45} +(-6.41858 + 23.9545i) q^{46} +(33.0000 + 33.0000i) q^{47} +(-3.46410 - 6.00000i) q^{48} +(-11.1506 - 6.43782i) q^{49} +(25.9545 - 6.95448i) q^{50} -49.3923i q^{51} +(25.5885 + 4.60770i) q^{52} -80.1051 q^{53} +(-9.50962 - 35.4904i) q^{54} +(-6.29423 + 10.9019i) q^{55} +(-19.2679 + 11.1244i) q^{56} +(-31.5622 + 31.5622i) q^{57} +(-0.973721 - 0.260908i) q^{58} +(10.1603 - 37.9186i) q^{59} +(6.00000 + 6.00000i) q^{60} +(14.3038 + 24.7750i) q^{61} +(40.4256 + 23.3397i) q^{62} +(-45.5885 + 12.2154i) q^{63} +8.00000i q^{64} +(-31.7321 + 2.66025i) q^{65} +12.5885 q^{66} +(12.8397 + 47.9186i) q^{67} +(-28.5167 + 49.3923i) q^{68} +(-26.3038 + 15.1865i) q^{69} +(19.2679 - 19.2679i) q^{70} +(7.03590 + 1.88526i) q^{71} +(-4.39230 + 16.3923i) q^{72} +(12.7654 + 12.7654i) q^{73} +(-15.5622 - 26.9545i) q^{74} +(28.5000 + 16.4545i) q^{75} +(49.7846 - 13.3397i) q^{76} -40.4256i q^{77} +(18.1699 + 26.1506i) q^{78} -14.3538 q^{79} +(-2.53590 - 9.46410i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-53.2750 + 30.7583i) q^{82} +(87.8372 - 87.8372i) q^{83} +(-26.3205 - 7.05256i) q^{84} +(18.0788 - 67.4711i) q^{85} +(-73.6410 - 73.6410i) q^{86} +(-0.617314 - 1.06922i) q^{87} +(-12.5885 - 7.26795i) q^{88} +(-52.2391 + 13.9974i) q^{89} -20.7846i q^{90} +(83.9782 - 58.3494i) q^{91} +35.0718 q^{92} +(14.7968 + 55.2224i) q^{93} +(33.0000 - 57.1577i) q^{94} +(-54.6673 + 31.5622i) q^{95} +(-6.92820 + 6.92820i) q^{96} +(131.488 + 35.2321i) q^{97} +(-4.71281 + 17.5885i) q^{98} +(-21.8038 - 21.8038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 6 q^{6} - 22 q^{7} + 8 q^{8} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} - 6 q^{6} - 22 q^{7} + 8 q^{8} + 12 q^{9} - 12 q^{10} - 6 q^{11} - 12 q^{13} - 4 q^{14} + 6 q^{15} + 8 q^{16} + 78 q^{17} + 24 q^{18} - 58 q^{19} - 12 q^{20} + 42 q^{21} + 18 q^{22} + 12 q^{23} + 12 q^{24} - 14 q^{26} - 44 q^{28} - 54 q^{29} - 128 q^{31} - 8 q^{32} - 30 q^{33} - 24 q^{34} + 42 q^{35} + 40 q^{37} - 12 q^{39} + 42 q^{42} + 120 q^{43} + 36 q^{44} + 36 q^{45} + 54 q^{46} + 132 q^{47} + 42 q^{49} + 38 q^{50} + 40 q^{52} - 168 q^{53} - 90 q^{54} + 6 q^{55} - 84 q^{56} - 102 q^{57} - 42 q^{58} + 6 q^{59} + 24 q^{60} + 78 q^{61} - 60 q^{62} - 120 q^{63} - 120 q^{65} - 12 q^{66} + 86 q^{67} - 24 q^{68} - 126 q^{69} + 84 q^{70} + 42 q^{71} + 24 q^{72} - 136 q^{73} - 38 q^{74} + 114 q^{75} + 116 q^{76} + 90 q^{78} + 192 q^{79} - 24 q^{80} - 18 q^{81} - 78 q^{82} + 192 q^{83} - 36 q^{84} - 42 q^{85} - 156 q^{86} - 96 q^{87} + 12 q^{88} - 60 q^{89} + 38 q^{91} + 168 q^{92} + 222 q^{93} + 132 q^{94} - 42 q^{95} + 280 q^{97} + 92 q^{98} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) 0.866025 1.50000i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 1.73205 1.73205i 0.346410 0.346410i −0.512360 0.858771i \(-0.671229\pi\)
0.858771 + 0.512360i \(0.171229\pi\)
\(6\) −2.36603 0.633975i −0.394338 0.105662i
\(7\) −2.03590 + 7.59808i −0.290843 + 1.08544i 0.653621 + 0.756822i \(0.273249\pi\)
−0.944463 + 0.328617i \(0.893417\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 3.00000 + 5.19615i 0.333333 + 0.577350i
\(10\) −3.00000 1.73205i −0.300000 0.173205i
\(11\) −4.96410 + 1.33013i −0.451282 + 0.120921i −0.477299 0.878741i \(-0.658384\pi\)
0.0260172 + 0.999661i \(0.491718\pi\)
\(12\) 3.46410i 0.288675i
\(13\) −9.92820 8.39230i −0.763708 0.645562i
\(14\) 11.1244 0.794597
\(15\) −1.09808 4.09808i −0.0732051 0.273205i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 24.6962 14.2583i 1.45271 0.838725i 0.454080 0.890961i \(-0.349968\pi\)
0.998635 + 0.0522356i \(0.0166347\pi\)
\(18\) 6.00000 6.00000i 0.333333 0.333333i
\(19\) −24.8923 6.66987i −1.31012 0.351046i −0.464853 0.885388i \(-0.653893\pi\)
−0.845268 + 0.534342i \(0.820559\pi\)
\(20\) −1.26795 + 4.73205i −0.0633975 + 0.236603i
\(21\) 9.63397 + 9.63397i 0.458761 + 0.458761i
\(22\) 3.63397 + 6.29423i 0.165181 + 0.286101i
\(23\) −15.1865 8.76795i −0.660284 0.381215i 0.132101 0.991236i \(-0.457828\pi\)
−0.792385 + 0.610021i \(0.791161\pi\)
\(24\) 4.73205 1.26795i 0.197169 0.0528312i
\(25\) 19.0000i 0.760000i
\(26\) −7.83013 + 16.6340i −0.301159 + 0.639768i
\(27\) 25.9808 0.962250
\(28\) −4.07180 15.1962i −0.145421 0.542720i
\(29\) 0.356406 0.617314i 0.0122899 0.0212867i −0.859815 0.510606i \(-0.829421\pi\)
0.872105 + 0.489319i \(0.162755\pi\)
\(30\) −5.19615 + 3.00000i −0.173205 + 0.100000i
\(31\) −23.3397 + 23.3397i −0.752895 + 0.752895i −0.975019 0.222124i \(-0.928701\pi\)
0.222124 + 0.975019i \(0.428701\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −2.30385 + 8.59808i −0.0698136 + 0.260548i
\(34\) −28.5167 28.5167i −0.838725 0.838725i
\(35\) 9.63397 + 16.6865i 0.275256 + 0.476758i
\(36\) −10.3923 6.00000i −0.288675 0.166667i
\(37\) 21.2583 5.69615i 0.574549 0.153950i 0.0401672 0.999193i \(-0.487211\pi\)
0.534382 + 0.845243i \(0.320544\pi\)
\(38\) 36.4449i 0.959075i
\(39\) −21.1865 + 7.62436i −0.543244 + 0.195496i
\(40\) 6.92820 0.173205
\(41\) −11.2583 42.0167i −0.274593 1.02480i −0.956113 0.292997i \(-0.905347\pi\)
0.681520 0.731800i \(-0.261319\pi\)
\(42\) 9.63397 16.6865i 0.229380 0.397298i
\(43\) 63.7750 36.8205i 1.48314 0.856291i 0.483323 0.875442i \(-0.339430\pi\)
0.999817 + 0.0191514i \(0.00609644\pi\)
\(44\) 7.26795 7.26795i 0.165181 0.165181i
\(45\) 14.1962 + 3.80385i 0.315470 + 0.0845299i
\(46\) −6.41858 + 23.9545i −0.139534 + 0.520750i
\(47\) 33.0000 + 33.0000i 0.702128 + 0.702128i 0.964867 0.262739i \(-0.0846259\pi\)
−0.262739 + 0.964867i \(0.584626\pi\)
\(48\) −3.46410 6.00000i −0.0721688 0.125000i
\(49\) −11.1506 6.43782i −0.227564 0.131384i
\(50\) 25.9545 6.95448i 0.519090 0.139090i
\(51\) 49.3923i 0.968477i
\(52\) 25.5885 + 4.60770i 0.492086 + 0.0886095i
\(53\) −80.1051 −1.51142 −0.755709 0.654908i \(-0.772707\pi\)
−0.755709 + 0.654908i \(0.772707\pi\)
\(54\) −9.50962 35.4904i −0.176104 0.657229i
\(55\) −6.29423 + 10.9019i −0.114441 + 0.198217i
\(56\) −19.2679 + 11.1244i −0.344071 + 0.198649i
\(57\) −31.5622 + 31.5622i −0.553722 + 0.553722i
\(58\) −0.973721 0.260908i −0.0167883 0.00449841i
\(59\) 10.1603 37.9186i 0.172208 0.642688i −0.824803 0.565421i \(-0.808714\pi\)
0.997010 0.0772673i \(-0.0246195\pi\)
\(60\) 6.00000 + 6.00000i 0.100000 + 0.100000i
\(61\) 14.3038 + 24.7750i 0.234489 + 0.406147i 0.959124 0.282986i \(-0.0913249\pi\)
−0.724635 + 0.689133i \(0.757992\pi\)
\(62\) 40.4256 + 23.3397i 0.652026 + 0.376448i
\(63\) −45.5885 + 12.2154i −0.723626 + 0.193895i
\(64\) 8.00000i 0.125000i
\(65\) −31.7321 + 2.66025i −0.488185 + 0.0409270i
\(66\) 12.5885 0.190734
\(67\) 12.8397 + 47.9186i 0.191638 + 0.715203i 0.993112 + 0.117173i \(0.0373831\pi\)
−0.801474 + 0.598030i \(0.795950\pi\)
\(68\) −28.5167 + 49.3923i −0.419363 + 0.726357i
\(69\) −26.3038 + 15.1865i −0.381215 + 0.220095i
\(70\) 19.2679 19.2679i 0.275256 0.275256i
\(71\) 7.03590 + 1.88526i 0.0990972 + 0.0265530i 0.308027 0.951378i \(-0.400331\pi\)
−0.208930 + 0.977931i \(0.566998\pi\)
\(72\) −4.39230 + 16.3923i −0.0610042 + 0.227671i
\(73\) 12.7654 + 12.7654i 0.174868 + 0.174868i 0.789114 0.614246i \(-0.210540\pi\)
−0.614246 + 0.789114i \(0.710540\pi\)
\(74\) −15.5622 26.9545i −0.210300 0.364250i
\(75\) 28.5000 + 16.4545i 0.380000 + 0.219393i
\(76\) 49.7846 13.3397i 0.655061 0.175523i
\(77\) 40.4256i 0.525008i
\(78\) 18.1699 + 26.1506i 0.232947 + 0.335265i
\(79\) −14.3538 −0.181694 −0.0908470 0.995865i \(-0.528957\pi\)
−0.0908470 + 0.995865i \(0.528957\pi\)
\(80\) −2.53590 9.46410i −0.0316987 0.118301i
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −53.2750 + 30.7583i −0.649695 + 0.375102i
\(83\) 87.8372 87.8372i 1.05828 1.05828i 0.0600859 0.998193i \(-0.480863\pi\)
0.998193 0.0600859i \(-0.0191375\pi\)
\(84\) −26.3205 7.05256i −0.313339 0.0839590i
\(85\) 18.0788 67.4711i 0.212692 0.793778i
\(86\) −73.6410 73.6410i −0.856291 0.856291i
\(87\) −0.617314 1.06922i −0.00709556 0.0122899i
\(88\) −12.5885 7.26795i −0.143051 0.0825903i
\(89\) −52.2391 + 13.9974i −0.586956 + 0.157274i −0.540062 0.841625i \(-0.681599\pi\)
−0.0468944 + 0.998900i \(0.514932\pi\)
\(90\) 20.7846i 0.230940i
\(91\) 83.9782 58.3494i 0.922837 0.641202i
\(92\) 35.0718 0.381215
\(93\) 14.7968 + 55.2224i 0.159105 + 0.593790i
\(94\) 33.0000 57.1577i 0.351064 0.608060i
\(95\) −54.6673 + 31.5622i −0.575445 + 0.332233i
\(96\) −6.92820 + 6.92820i −0.0721688 + 0.0721688i
\(97\) 131.488 + 35.2321i 1.35554 + 0.363217i 0.862178 0.506605i \(-0.169100\pi\)
0.493366 + 0.869822i \(0.335766\pi\)
\(98\) −4.71281 + 17.5885i −0.0480899 + 0.179474i
\(99\) −21.8038 21.8038i −0.220241 0.220241i
\(100\) −19.0000 32.9090i −0.190000 0.329090i
\(101\) 53.2461 + 30.7417i 0.527189 + 0.304373i 0.739871 0.672749i \(-0.234886\pi\)
−0.212682 + 0.977122i \(0.568220\pi\)
\(102\) −67.4711 + 18.0788i −0.661482 + 0.177244i
\(103\) 23.3205i 0.226413i 0.993571 + 0.113206i \(0.0361121\pi\)
−0.993571 + 0.113206i \(0.963888\pi\)
\(104\) −3.07180 36.6410i −0.0295365 0.352317i
\(105\) 33.3731 0.317839
\(106\) 29.3205 + 109.426i 0.276609 + 1.03232i
\(107\) −39.8660 + 69.0500i −0.372580 + 0.645327i −0.989962 0.141337i \(-0.954860\pi\)
0.617382 + 0.786664i \(0.288193\pi\)
\(108\) −45.0000 + 25.9808i −0.416667 + 0.240563i
\(109\) −103.655 + 103.655i −0.950964 + 0.950964i −0.998853 0.0478885i \(-0.984751\pi\)
0.0478885 + 0.998853i \(0.484751\pi\)
\(110\) 17.1962 + 4.60770i 0.156329 + 0.0418881i
\(111\) 9.86603 36.8205i 0.0888831 0.331716i
\(112\) 22.2487 + 22.2487i 0.198649 + 0.198649i
\(113\) −88.5000 153.286i −0.783186 1.35652i −0.930077 0.367365i \(-0.880260\pi\)
0.146891 0.989153i \(-0.453073\pi\)
\(114\) 54.6673 + 31.5622i 0.479538 + 0.276861i
\(115\) −41.4904 + 11.1173i −0.360786 + 0.0966723i
\(116\) 1.42563i 0.0122899i
\(117\) 13.8231 76.7654i 0.118146 0.656114i
\(118\) −55.5167 −0.470480
\(119\) 58.0570 + 216.672i 0.487874 + 1.82077i
\(120\) 6.00000 10.3923i 0.0500000 0.0866025i
\(121\) −81.9160 + 47.2942i −0.676992 + 0.390861i
\(122\) 28.6077 28.6077i 0.234489 0.234489i
\(123\) −72.7750 19.5000i −0.591667 0.158537i
\(124\) 17.0859 63.7654i 0.137789 0.514237i
\(125\) 76.2102 + 76.2102i 0.609682 + 0.609682i
\(126\) 33.3731 + 57.8038i 0.264866 + 0.458761i
\(127\) −147.651 85.2461i −1.16260 0.671229i −0.210677 0.977556i \(-0.567567\pi\)
−0.951927 + 0.306326i \(0.900900\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 127.550i 0.988760i
\(130\) 15.2487 + 42.3731i 0.117298 + 0.325947i
\(131\) −44.8513 −0.342376 −0.171188 0.985238i \(-0.554761\pi\)
−0.171188 + 0.985238i \(0.554761\pi\)
\(132\) −4.60770 17.1962i −0.0349068 0.130274i
\(133\) 101.356 175.554i 0.762078 1.31996i
\(134\) 60.7583 35.0788i 0.453420 0.261782i
\(135\) 45.0000 45.0000i 0.333333 0.333333i
\(136\) 77.9090 + 20.8756i 0.572860 + 0.153497i
\(137\) −24.3775 + 90.9782i −0.177938 + 0.664074i 0.818094 + 0.575084i \(0.195031\pi\)
−0.996032 + 0.0889903i \(0.971636\pi\)
\(138\) 30.3731 + 30.3731i 0.220095 + 0.220095i
\(139\) −9.59808 16.6244i −0.0690509 0.119600i 0.829433 0.558606i \(-0.188664\pi\)
−0.898484 + 0.439007i \(0.855330\pi\)
\(140\) −33.3731 19.2679i −0.238379 0.137628i
\(141\) 78.0788 20.9212i 0.553751 0.148377i
\(142\) 10.3013i 0.0725442i
\(143\) 60.4474 + 28.4545i 0.422709 + 0.198982i
\(144\) 24.0000 0.166667
\(145\) −0.451905 1.68653i −0.00311659 0.0116313i
\(146\) 12.7654 22.1103i 0.0874341 0.151440i
\(147\) −19.3135 + 11.1506i −0.131384 + 0.0758547i
\(148\) −31.1244 + 31.1244i −0.210300 + 0.210300i
\(149\) 36.0622 + 9.66283i 0.242028 + 0.0648512i 0.377794 0.925890i \(-0.376683\pi\)
−0.135766 + 0.990741i \(0.543349\pi\)
\(150\) 12.0455 44.9545i 0.0803034 0.299697i
\(151\) −161.406 161.406i −1.06892 1.06892i −0.997442 0.0714740i \(-0.977230\pi\)
−0.0714740 0.997442i \(-0.522770\pi\)
\(152\) −36.4449 63.1244i −0.239769 0.415292i
\(153\) 148.177 + 85.5500i 0.968477 + 0.559150i
\(154\) −55.2224 + 14.7968i −0.358587 + 0.0960832i
\(155\) 80.8513i 0.521621i
\(156\) 29.0718 34.3923i 0.186358 0.220463i
\(157\) −14.4308 −0.0919158 −0.0459579 0.998943i \(-0.514634\pi\)
−0.0459579 + 0.998943i \(0.514634\pi\)
\(158\) 5.25387 + 19.6077i 0.0332523 + 0.124099i
\(159\) −69.3731 + 120.158i −0.436309 + 0.755709i
\(160\) −12.0000 + 6.92820i −0.0750000 + 0.0433013i
\(161\) 97.5378 97.5378i 0.605825 0.605825i
\(162\) 12.2942 + 3.29423i 0.0758903 + 0.0203347i
\(163\) 6.40381 23.8993i 0.0392872 0.146622i −0.943496 0.331383i \(-0.892485\pi\)
0.982783 + 0.184762i \(0.0591513\pi\)
\(164\) 61.5167 + 61.5167i 0.375102 + 0.375102i
\(165\) 10.9019 + 18.8827i 0.0660723 + 0.114441i
\(166\) −152.138 87.8372i −0.916497 0.529140i
\(167\) 56.6769 15.1865i 0.339383 0.0909373i −0.0851025 0.996372i \(-0.527122\pi\)
0.424485 + 0.905435i \(0.360455\pi\)
\(168\) 38.5359i 0.229380i
\(169\) 28.1384 + 166.641i 0.166500 + 0.986042i
\(170\) −98.7846 −0.581086
\(171\) −40.0192 149.354i −0.234031 0.873414i
\(172\) −73.6410 + 127.550i −0.428145 + 0.741570i
\(173\) −62.1462 + 35.8801i −0.359226 + 0.207399i −0.668741 0.743495i \(-0.733167\pi\)
0.309515 + 0.950895i \(0.399833\pi\)
\(174\) −1.23463 + 1.23463i −0.00709556 + 0.00709556i
\(175\) −144.363 38.6821i −0.824934 0.221040i
\(176\) −5.32051 + 19.8564i −0.0302302 + 0.112820i
\(177\) −48.0788 48.0788i −0.271632 0.271632i
\(178\) 38.2417 + 66.2365i 0.214841 + 0.372115i
\(179\) 139.148 + 80.3372i 0.777363 + 0.448811i 0.835495 0.549498i \(-0.185181\pi\)
−0.0581316 + 0.998309i \(0.518514\pi\)
\(180\) −28.3923 + 7.60770i −0.157735 + 0.0422650i
\(181\) 143.072i 0.790452i 0.918584 + 0.395226i \(0.129334\pi\)
−0.918584 + 0.395226i \(0.870666\pi\)
\(182\) −110.445 93.3590i −0.606840 0.512961i
\(183\) 49.5500 0.270765
\(184\) −12.8372 47.9090i −0.0697672 0.260375i
\(185\) 26.9545 46.6865i 0.145700 0.252360i
\(186\) 70.0192 40.4256i 0.376448 0.217342i
\(187\) −103.629 + 103.629i −0.554165 + 0.554165i
\(188\) −90.1577 24.1577i −0.479562 0.128498i
\(189\) −52.8942 + 197.404i −0.279863 + 1.04446i
\(190\) 63.1244 + 63.1244i 0.332233 + 0.332233i
\(191\) 142.703 + 247.169i 0.747137 + 1.29408i 0.949190 + 0.314705i \(0.101906\pi\)
−0.202052 + 0.979375i \(0.564761\pi\)
\(192\) 12.0000 + 6.92820i 0.0625000 + 0.0360844i
\(193\) 85.5070 22.9115i 0.443042 0.118713i −0.0304000 0.999538i \(-0.509678\pi\)
0.473442 + 0.880825i \(0.343011\pi\)
\(194\) 192.512i 0.992327i
\(195\) −23.4904 + 49.9019i −0.120463 + 0.255907i
\(196\) 25.7513 0.131384
\(197\) −97.1725 362.653i −0.493261 1.84088i −0.539559 0.841948i \(-0.681409\pi\)
0.0462974 0.998928i \(-0.485258\pi\)
\(198\) −21.8038 + 37.7654i −0.110120 + 0.190734i
\(199\) 257.789 148.835i 1.29542 0.747913i 0.315813 0.948822i \(-0.397723\pi\)
0.979610 + 0.200909i \(0.0643896\pi\)
\(200\) −38.0000 + 38.0000i −0.190000 + 0.190000i
\(201\) 82.9974 + 22.2391i 0.412923 + 0.110642i
\(202\) 22.5045 83.9878i 0.111408 0.415781i
\(203\) 3.96479 + 3.96479i 0.0195310 + 0.0195310i
\(204\) 49.3923 + 85.5500i 0.242119 + 0.419363i
\(205\) −92.2750 53.2750i −0.450122 0.259878i
\(206\) 31.8564 8.53590i 0.154643 0.0414364i
\(207\) 105.215i 0.508287i
\(208\) −48.9282 + 17.6077i −0.235232 + 0.0846524i
\(209\) 132.440 0.633683
\(210\) −12.2154 45.5885i −0.0581685 0.217088i
\(211\) −27.2532 + 47.2039i −0.129162 + 0.223715i −0.923352 0.383954i \(-0.874562\pi\)
0.794190 + 0.607669i \(0.207895\pi\)
\(212\) 138.746 80.1051i 0.654463 0.377854i
\(213\) 8.92116 8.92116i 0.0418834 0.0418834i
\(214\) 108.916 + 29.1840i 0.508953 + 0.136374i
\(215\) 46.6865 174.237i 0.217147 0.810402i
\(216\) 51.9615 + 51.9615i 0.240563 + 0.240563i
\(217\) −129.820 224.855i −0.598248 1.03620i
\(218\) 179.536 + 103.655i 0.823559 + 0.475482i
\(219\) 30.2032 8.09292i 0.137914 0.0369540i
\(220\) 25.1769i 0.114441i
\(221\) −364.849 65.6980i −1.65090 0.297276i
\(222\) −53.9090 −0.242833
\(223\) −39.3949 147.024i −0.176659 0.659299i −0.996263 0.0863694i \(-0.972473\pi\)
0.819605 0.572930i \(-0.194193\pi\)
\(224\) 22.2487 38.5359i 0.0993246 0.172035i
\(225\) −98.7269 + 57.0000i −0.438786 + 0.253333i
\(226\) −177.000 + 177.000i −0.783186 + 0.783186i
\(227\) −207.978 55.7276i −0.916203 0.245496i −0.230242 0.973133i \(-0.573952\pi\)
−0.685962 + 0.727638i \(0.740618\pi\)
\(228\) 23.1051 86.2295i 0.101338 0.378199i
\(229\) 9.23463 + 9.23463i 0.0403259 + 0.0403259i 0.726982 0.686656i \(-0.240922\pi\)
−0.686656 + 0.726982i \(0.740922\pi\)
\(230\) 30.3731 + 52.6077i 0.132057 + 0.228729i
\(231\) −60.6384 35.0096i −0.262504 0.151557i
\(232\) 1.94744 0.521815i 0.00839414 0.00224920i
\(233\) 397.061i 1.70413i 0.523439 + 0.852063i \(0.324649\pi\)
−0.523439 + 0.852063i \(0.675351\pi\)
\(234\) −109.923 + 9.21539i −0.469757 + 0.0393820i
\(235\) 114.315 0.486448
\(236\) 20.3205 + 75.8372i 0.0861038 + 0.321344i
\(237\) −12.4308 + 21.5307i −0.0524506 + 0.0908470i
\(238\) 274.729 158.615i 1.15432 0.666448i
\(239\) 198.688 198.688i 0.831332 0.831332i −0.156367 0.987699i \(-0.549978\pi\)
0.987699 + 0.156367i \(0.0499782\pi\)
\(240\) −16.3923 4.39230i −0.0683013 0.0183013i
\(241\) −84.6699 + 315.992i −0.351327 + 1.31117i 0.533717 + 0.845663i \(0.320795\pi\)
−0.885044 + 0.465508i \(0.845872\pi\)
\(242\) 94.5885 + 94.5885i 0.390861 + 0.390861i
\(243\) 124.708 + 216.000i 0.513200 + 0.888889i
\(244\) −49.5500 28.6077i −0.203074 0.117245i
\(245\) −30.4641 + 8.16283i −0.124343 + 0.0333177i
\(246\) 106.550i 0.433130i
\(247\) 191.160 + 275.124i 0.773928 + 1.11386i
\(248\) −93.3590 −0.376448
\(249\) −55.6865 207.825i −0.223641 0.834638i
\(250\) 76.2102 132.000i 0.304841 0.528000i
\(251\) −134.267 + 77.5192i −0.534929 + 0.308842i −0.743021 0.669268i \(-0.766608\pi\)
0.208092 + 0.978109i \(0.433275\pi\)
\(252\) 66.7461 66.7461i 0.264866 0.264866i
\(253\) 87.0500 + 23.3250i 0.344071 + 0.0921936i
\(254\) −62.4045 + 232.897i −0.245687 + 0.916916i
\(255\) −85.5500 85.5500i −0.335490 0.335490i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −262.012 151.272i −1.01950 0.588609i −0.105541 0.994415i \(-0.533657\pi\)
−0.913959 + 0.405806i \(0.866991\pi\)
\(258\) −174.237 + 46.6865i −0.675335 + 0.180956i
\(259\) 173.119i 0.668414i
\(260\) 52.3013 36.3397i 0.201159 0.139768i
\(261\) 4.27688 0.0163865
\(262\) 16.4167 + 61.2679i 0.0626592 + 0.233847i
\(263\) −25.2968 + 43.8154i −0.0961856 + 0.166598i −0.910103 0.414383i \(-0.863998\pi\)
0.813917 + 0.580981i \(0.197331\pi\)
\(264\) −21.8038 + 12.5885i −0.0825903 + 0.0476836i
\(265\) −138.746 + 138.746i −0.523570 + 0.523570i
\(266\) −276.911 74.1980i −1.04102 0.278940i
\(267\) −24.2442 + 90.4808i −0.0908024 + 0.338879i
\(268\) −70.1577 70.1577i −0.261782 0.261782i
\(269\) 21.4474 + 37.1481i 0.0797303 + 0.138097i 0.903134 0.429360i \(-0.141261\pi\)
−0.823403 + 0.567457i \(0.807927\pi\)
\(270\) −77.9423 45.0000i −0.288675 0.166667i
\(271\) 478.614 128.244i 1.76610 0.473226i 0.778163 0.628062i \(-0.216152\pi\)
0.987940 + 0.154836i \(0.0494849\pi\)
\(272\) 114.067i 0.419363i
\(273\) −14.7968 176.499i −0.0542008 0.646518i
\(274\) 133.201 0.486136
\(275\) −25.2724 94.3179i −0.0918997 0.342974i
\(276\) 30.3731 52.6077i 0.110047 0.190608i
\(277\) 184.227 106.363i 0.665079 0.383984i −0.129130 0.991628i \(-0.541219\pi\)
0.794209 + 0.607644i \(0.207885\pi\)
\(278\) −19.1962 + 19.1962i −0.0690509 + 0.0690509i
\(279\) −191.296 51.2576i −0.685649 0.183719i
\(280\) −14.1051 + 52.6410i −0.0503754 + 0.188004i
\(281\) 27.2243 + 27.2243i 0.0968837 + 0.0968837i 0.753887 0.657004i \(-0.228176\pi\)
−0.657004 + 0.753887i \(0.728176\pi\)
\(282\) −57.1577 99.0000i −0.202687 0.351064i
\(283\) −126.526 73.0500i −0.447089 0.258127i 0.259511 0.965740i \(-0.416439\pi\)
−0.706600 + 0.707613i \(0.749772\pi\)
\(284\) −14.0718 + 3.77053i −0.0495486 + 0.0132765i
\(285\) 109.335i 0.383630i
\(286\) 16.7442 92.9878i 0.0585463 0.325132i
\(287\) 342.167 1.19222
\(288\) −8.78461 32.7846i −0.0305021 0.113835i
\(289\) 262.100 453.970i 0.906920 1.57083i
\(290\) −2.13844 + 1.23463i −0.00737393 + 0.00425734i
\(291\) 166.720 166.720i 0.572920 0.572920i
\(292\) −34.8756 9.34490i −0.119437 0.0320031i
\(293\) 25.3212 94.5000i 0.0864205 0.322526i −0.909159 0.416449i \(-0.863274\pi\)
0.995579 + 0.0939237i \(0.0299410\pi\)
\(294\) 22.3013 + 22.3013i 0.0758547 + 0.0758547i
\(295\) −48.0788 83.2750i −0.162979 0.282288i
\(296\) 53.9090 + 31.1244i 0.182125 + 0.105150i
\(297\) −128.971 + 34.5577i −0.434246 + 0.116356i
\(298\) 52.7987i 0.177177i
\(299\) 77.1917 + 214.500i 0.258166 + 0.717391i
\(300\) −65.8179 −0.219393
\(301\) 149.926 + 559.530i 0.498092 + 1.85890i
\(302\) −161.406 + 279.564i −0.534458 + 0.925709i
\(303\) 92.2250 53.2461i 0.304373 0.175730i
\(304\) −72.8897 + 72.8897i −0.239769 + 0.239769i
\(305\) 67.6865 + 18.1366i 0.221923 + 0.0594641i
\(306\) 62.6269 233.727i 0.204663 0.763813i
\(307\) −2.62178 2.62178i −0.00853999 0.00853999i 0.702824 0.711364i \(-0.251922\pi\)
−0.711364 + 0.702824i \(0.751922\pi\)
\(308\) 40.4256 + 70.0192i 0.131252 + 0.227335i
\(309\) 34.9808 + 20.1962i 0.113206 + 0.0653597i
\(310\) 110.445 29.5936i 0.356274 0.0954633i
\(311\) 386.038i 1.24128i −0.784095 0.620641i \(-0.786873\pi\)
0.784095 0.620641i \(-0.213127\pi\)
\(312\) −57.6218 27.1244i −0.184685 0.0869370i
\(313\) −35.1384 −0.112263 −0.0561317 0.998423i \(-0.517877\pi\)
−0.0561317 + 0.998423i \(0.517877\pi\)
\(314\) 5.28203 + 19.7128i 0.0168218 + 0.0627797i
\(315\) −57.8038 + 100.119i −0.183504 + 0.317839i
\(316\) 24.8616 14.3538i 0.0786758 0.0454235i
\(317\) −12.5307 + 12.5307i −0.0395292 + 0.0395292i −0.726595 0.687066i \(-0.758898\pi\)
0.687066 + 0.726595i \(0.258898\pi\)
\(318\) 189.531 + 50.7846i 0.596009 + 0.159700i
\(319\) −0.948132 + 3.53848i −0.00297220 + 0.0110924i
\(320\) 13.8564 + 13.8564i 0.0433013 + 0.0433013i
\(321\) 69.0500 + 119.598i 0.215109 + 0.372580i
\(322\) −168.940 97.5378i −0.524660 0.302912i
\(323\) −709.845 + 190.203i −2.19766 + 0.588862i
\(324\) 18.0000i 0.0555556i
\(325\) 159.454 188.636i 0.490627 0.580418i
\(326\) −34.9911 −0.107335
\(327\) 65.7147 + 245.251i 0.200962 + 0.750002i
\(328\) 61.5167 106.550i 0.187551 0.324848i
\(329\) −317.921 + 183.552i −0.966326 + 0.557908i
\(330\) 21.8038 21.8038i 0.0660723 0.0660723i
\(331\) −249.959 66.9763i −0.755163 0.202345i −0.139356 0.990242i \(-0.544503\pi\)
−0.615807 + 0.787897i \(0.711170\pi\)
\(332\) −64.3013 + 239.976i −0.193679 + 0.722818i
\(333\) 93.3731 + 93.3731i 0.280400 + 0.280400i
\(334\) −41.4904 71.8634i −0.124223 0.215160i
\(335\) 105.237 + 60.7583i 0.314139 + 0.181368i
\(336\) 52.6410 14.1051i 0.156670 0.0419795i
\(337\) 94.9461i 0.281739i −0.990028 0.140870i \(-0.955010\pi\)
0.990028 0.140870i \(-0.0449898\pi\)
\(338\) 217.336 99.4327i 0.643007 0.294179i
\(339\) −306.573 −0.904345
\(340\) 36.1577 + 134.942i 0.106346 + 0.396889i
\(341\) 84.8160 146.906i 0.248727 0.430808i
\(342\) −189.373 + 109.335i −0.553722 + 0.319692i
\(343\) −200.930 + 200.930i −0.585802 + 0.585802i
\(344\) 201.191 + 53.9090i 0.584858 + 0.156712i
\(345\) −19.2558 + 71.8634i −0.0558138 + 0.208300i
\(346\) 71.7602 + 71.7602i 0.207399 + 0.207399i
\(347\) −52.2302 90.4653i −0.150519 0.260707i 0.780899 0.624657i \(-0.214761\pi\)
−0.931418 + 0.363950i \(0.881428\pi\)
\(348\) 2.13844 + 1.23463i 0.00614494 + 0.00354778i
\(349\) −78.0763 + 20.9205i −0.223714 + 0.0599440i −0.368935 0.929455i \(-0.620277\pi\)
0.145221 + 0.989399i \(0.453611\pi\)
\(350\) 211.363i 0.603894i
\(351\) −257.942 218.038i −0.734878 0.621192i
\(352\) 29.0718 0.0825903
\(353\) −44.1429 164.744i −0.125051 0.466696i 0.874791 0.484501i \(-0.160999\pi\)
−0.999841 + 0.0178053i \(0.994332\pi\)
\(354\) −48.0788 + 83.2750i −0.135816 + 0.235240i
\(355\) 15.4519 8.92116i 0.0435265 0.0251300i
\(356\) 76.4833 76.4833i 0.214841 0.214841i
\(357\) 375.286 + 100.558i 1.05122 + 0.281674i
\(358\) 58.8109 219.485i 0.164276 0.613087i
\(359\) −102.058 102.058i −0.284283 0.284283i 0.550531 0.834815i \(-0.314425\pi\)
−0.834815 + 0.550531i \(0.814425\pi\)
\(360\) 20.7846 + 36.0000i 0.0577350 + 0.100000i
\(361\) 262.504 + 151.557i 0.727159 + 0.419826i
\(362\) 195.440 52.3679i 0.539889 0.144663i
\(363\) 163.832i 0.451328i
\(364\) −87.1051 + 185.042i −0.239300 + 0.508358i
\(365\) 44.2205 0.121152
\(366\) −18.1366 67.6865i −0.0495534 0.184936i
\(367\) −238.856 + 413.710i −0.650833 + 1.12728i 0.332088 + 0.943248i \(0.392247\pi\)
−0.982921 + 0.184027i \(0.941086\pi\)
\(368\) −60.7461 + 35.0718i −0.165071 + 0.0953038i
\(369\) 184.550 184.550i 0.500135 0.500135i
\(370\) −73.6410 19.7321i −0.199030 0.0533299i
\(371\) 163.086 608.645i 0.439585 1.64055i
\(372\) −80.8513 80.8513i −0.217342 0.217342i
\(373\) −257.744 446.425i −0.691001 1.19685i −0.971510 0.236998i \(-0.923836\pi\)
0.280509 0.959852i \(-0.409497\pi\)
\(374\) 179.490 + 103.629i 0.479921 + 0.277082i
\(375\) 180.315 48.3154i 0.480841 0.128841i
\(376\) 132.000i 0.351064i
\(377\) −8.71916 + 3.13775i −0.0231278 + 0.00832294i
\(378\) 289.019 0.764601
\(379\) 70.8449 + 264.397i 0.186926 + 0.697617i 0.994210 + 0.107454i \(0.0342698\pi\)
−0.807284 + 0.590163i \(0.799064\pi\)
\(380\) 63.1244 109.335i 0.166117 0.287723i
\(381\) −255.738 + 147.651i −0.671229 + 0.387534i
\(382\) 285.406 285.406i 0.747137 0.747137i
\(383\) 451.791 + 121.057i 1.17961 + 0.316076i 0.794772 0.606908i \(-0.207590\pi\)
0.384839 + 0.922984i \(0.374257\pi\)
\(384\) 5.07180 18.9282i 0.0132078 0.0492922i
\(385\) −70.0192 70.0192i −0.181868 0.181868i
\(386\) −62.5955 108.419i −0.162165 0.280877i
\(387\) 382.650 + 220.923i 0.988760 + 0.570861i
\(388\) −262.976 + 70.4641i −0.677772 + 0.181609i
\(389\) 572.687i 1.47220i −0.676871 0.736102i \(-0.736665\pi\)
0.676871 0.736102i \(-0.263335\pi\)
\(390\) 76.7654 + 13.8231i 0.196834 + 0.0354438i
\(391\) −500.065 −1.27894
\(392\) −9.42563 35.1769i −0.0240450 0.0897370i
\(393\) −38.8423 + 67.2769i −0.0988354 + 0.171188i
\(394\) −459.825 + 265.480i −1.16707 + 0.673807i
\(395\) −24.8616 + 24.8616i −0.0629407 + 0.0629407i
\(396\) 59.5692 + 15.9615i 0.150427 + 0.0403069i
\(397\) 15.8275 59.0692i 0.0398679 0.148789i −0.943123 0.332445i \(-0.892127\pi\)
0.982991 + 0.183656i \(0.0587932\pi\)
\(398\) −297.669 297.669i −0.747913 0.747913i
\(399\) −175.554 304.069i −0.439986 0.762078i
\(400\) 65.8179 + 38.0000i 0.164545 + 0.0950000i
\(401\) 521.798 139.815i 1.30124 0.348667i 0.459322 0.888270i \(-0.348092\pi\)
0.841920 + 0.539603i \(0.181426\pi\)
\(402\) 121.517i 0.302280i
\(403\) 427.596 35.8475i 1.06103 0.0889516i
\(404\) −122.967 −0.304373
\(405\) 5.70577 + 21.2942i 0.0140883 + 0.0525783i
\(406\) 3.96479 6.86722i 0.00976550 0.0169143i
\(407\) −97.9519 + 56.5526i −0.240668 + 0.138950i
\(408\) 98.7846 98.7846i 0.242119 0.242119i
\(409\) −20.0237 5.36533i −0.0489577 0.0131182i 0.234257 0.972175i \(-0.424734\pi\)
−0.283215 + 0.959057i \(0.591401\pi\)
\(410\) −39.0000 + 145.550i −0.0951220 + 0.355000i
\(411\) 115.356 + 115.356i 0.280671 + 0.280671i
\(412\) −23.3205 40.3923i −0.0566032 0.0980396i
\(413\) 267.423 + 154.397i 0.647513 + 0.373842i
\(414\) −143.727 + 38.5115i −0.347166 + 0.0930230i
\(415\) 304.277i 0.733197i
\(416\) 41.9615 + 60.3923i 0.100869 + 0.145174i
\(417\) −33.2487 −0.0797331
\(418\) −48.4763 180.916i −0.115972 0.432813i
\(419\) −173.598 + 300.681i −0.414315 + 0.717615i −0.995356 0.0962592i \(-0.969312\pi\)
0.581041 + 0.813874i \(0.302646\pi\)
\(420\) −57.8038 + 33.3731i −0.137628 + 0.0794597i
\(421\) −286.555 + 286.555i −0.680654 + 0.680654i −0.960147 0.279494i \(-0.909833\pi\)
0.279494 + 0.960147i \(0.409833\pi\)
\(422\) 74.4571 + 19.9507i 0.176439 + 0.0472766i
\(423\) −72.4730 + 270.473i −0.171331 + 0.639416i
\(424\) −160.210 160.210i −0.377854 0.377854i
\(425\) 270.908 + 469.227i 0.637431 + 1.10406i
\(426\) −15.4519 8.92116i −0.0362721 0.0209417i
\(427\) −217.363 + 58.2424i −0.509048 + 0.136399i
\(428\) 159.464i 0.372580i
\(429\) 95.0307 66.0289i 0.221517 0.153913i
\(430\) −255.100 −0.593256
\(431\) 79.3602 + 296.176i 0.184130 + 0.687184i 0.994815 + 0.101701i \(0.0324284\pi\)
−0.810685 + 0.585483i \(0.800905\pi\)
\(432\) 51.9615 90.0000i 0.120281 0.208333i
\(433\) −73.2757 + 42.3057i −0.169228 + 0.0977038i −0.582222 0.813030i \(-0.697816\pi\)
0.412994 + 0.910734i \(0.364483\pi\)
\(434\) −259.640 + 259.640i −0.598248 + 0.598248i
\(435\) −2.92116 0.782723i −0.00671531 0.00179936i
\(436\) 75.8808 283.191i 0.174039 0.649521i
\(437\) 319.547 + 319.547i 0.731228 + 0.731228i
\(438\) −22.1103 38.2961i −0.0504801 0.0874341i
\(439\) −379.794 219.274i −0.865135 0.499486i 0.000593556 1.00000i \(-0.499811\pi\)
−0.865728 + 0.500514i \(0.833144\pi\)
\(440\) −34.3923 + 9.21539i −0.0781643 + 0.0209441i
\(441\) 77.2539i 0.175179i
\(442\) 43.7987 + 522.440i 0.0990921 + 1.18199i
\(443\) −323.836 −0.731006 −0.365503 0.930810i \(-0.619103\pi\)
−0.365503 + 0.930810i \(0.619103\pi\)
\(444\) 19.7321 + 73.6410i 0.0444416 + 0.165858i
\(445\) −66.2365 + 114.725i −0.148846 + 0.257809i
\(446\) −186.419 + 107.629i −0.417979 + 0.241320i
\(447\) 45.7250 45.7250i 0.102293 0.102293i
\(448\) −60.7846 16.2872i −0.135680 0.0363553i
\(449\) 91.5122 341.528i 0.203813 0.760642i −0.785995 0.618233i \(-0.787849\pi\)
0.989808 0.142408i \(-0.0454847\pi\)
\(450\) 114.000 + 114.000i 0.253333 + 0.253333i
\(451\) 111.775 + 193.600i 0.247838 + 0.429268i
\(452\) 306.573 + 177.000i 0.678259 + 0.391593i
\(453\) −381.892 + 102.328i −0.843028 + 0.225889i
\(454\) 304.501i 0.670707i
\(455\) 44.3904 246.519i 0.0975614 0.541799i
\(456\) −126.249 −0.276861
\(457\) 68.8763 + 257.050i 0.150714 + 0.562473i 0.999434 + 0.0336305i \(0.0107070\pi\)
−0.848720 + 0.528842i \(0.822626\pi\)
\(458\) 9.23463 15.9948i 0.0201629 0.0349232i
\(459\) 641.625 370.442i 1.39788 0.807064i
\(460\) 60.7461 60.7461i 0.132057 0.132057i
\(461\) 145.521 + 38.9923i 0.315664 + 0.0845819i 0.413173 0.910653i \(-0.364421\pi\)
−0.0975085 + 0.995235i \(0.531087\pi\)
\(462\) −25.6288 + 95.6481i −0.0554736 + 0.207030i
\(463\) 48.4115 + 48.4115i 0.104561 + 0.104561i 0.757452 0.652891i \(-0.226444\pi\)
−0.652891 + 0.757452i \(0.726444\pi\)
\(464\) −1.42563 2.46926i −0.00307247 0.00532167i
\(465\) 121.277 + 70.0192i 0.260810 + 0.150579i
\(466\) 542.396 145.335i 1.16394 0.311877i
\(467\) 138.764i 0.297139i −0.988902 0.148570i \(-0.952533\pi\)
0.988902 0.148570i \(-0.0474669\pi\)
\(468\) 52.8231 + 146.785i 0.112870 + 0.313642i
\(469\) −390.229 −0.832046
\(470\) −41.8423 156.158i −0.0890262 0.332250i
\(471\) −12.4974 + 21.6462i −0.0265338 + 0.0459579i
\(472\) 96.1577 55.5167i 0.203724 0.117620i
\(473\) −267.610 + 267.610i −0.565771 + 0.565771i
\(474\) 33.9615 + 9.09996i 0.0716488 + 0.0191982i
\(475\) 126.728 472.954i 0.266795 0.995692i
\(476\) −317.229 317.229i −0.666448 0.666448i
\(477\) −240.315 416.238i −0.503806 0.872617i
\(478\) −344.138 198.688i −0.719955 0.415666i
\(479\) −221.959 + 59.4737i −0.463380 + 0.124162i −0.482953 0.875646i \(-0.660436\pi\)
0.0195733 + 0.999808i \(0.493769\pi\)
\(480\) 24.0000i 0.0500000i
\(481\) −258.861 121.854i −0.538172 0.253334i
\(482\) 462.645 0.959844
\(483\) −61.8365 230.777i −0.128026 0.477799i
\(484\) 94.5885 163.832i 0.195431 0.338496i
\(485\) 288.767 166.720i 0.595396 0.343752i
\(486\) 249.415 249.415i 0.513200 0.513200i
\(487\) 471.064 + 126.221i 0.967277 + 0.259181i 0.707678 0.706535i \(-0.249743\pi\)
0.259599 + 0.965716i \(0.416409\pi\)
\(488\) −20.9423 + 78.1577i −0.0429145 + 0.160159i
\(489\) −30.3032 30.3032i −0.0619696 0.0619696i
\(490\) 22.3013 + 38.6269i 0.0455128 + 0.0788305i
\(491\) −453.156 261.630i −0.922924 0.532850i −0.0383572 0.999264i \(-0.512212\pi\)
−0.884567 + 0.466414i \(0.845546\pi\)
\(492\) 145.550 39.0000i 0.295833 0.0792683i
\(493\) 20.3270i 0.0412313i
\(494\) 305.856 361.832i 0.619143 0.732453i
\(495\) −75.5307 −0.152587
\(496\) 34.1718 + 127.531i 0.0688947 + 0.257118i
\(497\) −28.6487 + 49.6211i −0.0576434 + 0.0998412i
\(498\) −263.512 + 152.138i −0.529140 + 0.305499i
\(499\) 108.412 108.412i 0.217258 0.217258i −0.590084 0.807342i \(-0.700905\pi\)
0.807342 + 0.590084i \(0.200905\pi\)
\(500\) −208.210 55.7898i −0.416420 0.111580i
\(501\) 26.3038 98.1673i 0.0525027 0.195943i
\(502\) 155.038 + 155.038i 0.308842 + 0.308842i
\(503\) 202.861 + 351.365i 0.403302 + 0.698539i 0.994122 0.108264i \(-0.0345291\pi\)
−0.590820 + 0.806803i \(0.701196\pi\)
\(504\) −115.608 66.7461i −0.229380 0.132433i
\(505\) 145.471 38.9789i 0.288062 0.0771859i
\(506\) 127.450i 0.251878i
\(507\) 274.330 + 102.108i 0.541085 + 0.201396i
\(508\) 340.985 0.671229
\(509\) −40.0814 149.586i −0.0787454 0.293882i 0.915311 0.402748i \(-0.131945\pi\)
−0.994056 + 0.108866i \(0.965278\pi\)
\(510\) −85.5500 + 148.177i −0.167745 + 0.290543i
\(511\) −122.981 + 71.0033i −0.240668 + 0.138950i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −646.721 173.288i −1.26066 0.337794i
\(514\) −110.739 + 413.284i −0.215446 + 0.804054i
\(515\) 40.3923 + 40.3923i 0.0784317 + 0.0784317i
\(516\) 127.550 + 220.923i 0.247190 + 0.428145i
\(517\) −207.710 119.921i −0.401759 0.231956i
\(518\) 236.485 63.3660i 0.456535 0.122328i
\(519\) 124.292i 0.239484i
\(520\) −68.7846 58.1436i −0.132278 0.111815i
\(521\) −239.636 −0.459954 −0.229977 0.973196i \(-0.573865\pi\)
−0.229977 + 0.973196i \(0.573865\pi\)
\(522\) −1.56545 5.84232i −0.00299894 0.0111922i
\(523\) 497.663 861.978i 0.951555 1.64814i 0.209494 0.977810i \(-0.432818\pi\)
0.742061 0.670332i \(-0.233848\pi\)
\(524\) 77.6846 44.8513i 0.148253 0.0855940i
\(525\) −183.046 + 183.046i −0.348658 + 0.348658i
\(526\) 69.1122 + 18.5185i 0.131392 + 0.0352064i
\(527\) −243.616 + 909.188i −0.462270 + 1.72521i
\(528\) 25.1769 + 25.1769i 0.0476836 + 0.0476836i
\(529\) −110.746 191.818i −0.209350 0.362605i
\(530\) 240.315 + 138.746i 0.453425 + 0.261785i
\(531\) 227.512 60.9615i 0.428459 0.114805i
\(532\) 405.426i 0.762078i
\(533\) −240.842 + 511.633i −0.451860 + 0.959912i
\(534\) 132.473 0.248077
\(535\) 50.5481 + 188.648i 0.0944824 + 0.352613i
\(536\) −70.1577 + 121.517i −0.130891 + 0.226710i
\(537\) 241.012 139.148i 0.448811 0.259121i
\(538\) 42.8949 42.8949i 0.0797303 0.0797303i
\(539\) 63.9160 + 17.1262i 0.118583 + 0.0317741i
\(540\) −32.9423 + 122.942i −0.0610042 + 0.227671i
\(541\) 74.1000 + 74.1000i 0.136969 + 0.136969i 0.772267 0.635298i \(-0.219123\pi\)
−0.635298 + 0.772267i \(0.719123\pi\)
\(542\) −350.370 606.858i −0.646439 1.11966i
\(543\) 214.608 + 123.904i 0.395226 + 0.228184i
\(544\) −155.818 + 41.7513i −0.286430 + 0.0767487i
\(545\) 359.072i 0.658847i
\(546\) −235.687 + 84.8160i −0.431660 + 0.155341i
\(547\) 961.854 1.75842 0.879208 0.476438i \(-0.158072\pi\)
0.879208 + 0.476438i \(0.158072\pi\)
\(548\) −48.7551 181.956i −0.0889691 0.332037i
\(549\) −85.8231 + 148.650i −0.156326 + 0.270765i
\(550\) −119.590 + 69.0455i −0.217437 + 0.125537i
\(551\) −12.9892 + 12.9892i −0.0235738 + 0.0235738i
\(552\) −82.9808 22.2346i −0.150327 0.0402801i
\(553\) 29.2229 109.061i 0.0528444 0.197218i
\(554\) −212.727 212.727i −0.383984 0.383984i
\(555\) −46.6865 80.8634i −0.0841199 0.145700i
\(556\) 33.2487 + 19.1962i 0.0597998 + 0.0345255i
\(557\) −729.917 + 195.581i −1.31044 + 0.351132i −0.845390 0.534150i \(-0.820632\pi\)
−0.465054 + 0.885282i \(0.653965\pi\)
\(558\) 280.077i 0.501930i
\(559\) −942.180 169.658i −1.68547 0.303502i
\(560\) 77.0718 0.137628
\(561\) 65.6980 + 245.188i 0.117109 + 0.437056i
\(562\) 27.2243 47.1539i 0.0484418 0.0839037i
\(563\) −26.1250 + 15.0833i −0.0464033 + 0.0267909i −0.523022 0.852319i \(-0.675196\pi\)
0.476619 + 0.879110i \(0.341862\pi\)
\(564\) −114.315 + 114.315i −0.202687 + 0.202687i
\(565\) −418.786 112.214i −0.741215 0.198608i
\(566\) −53.4763 + 199.576i −0.0944811 + 0.352608i
\(567\) −50.0596 50.0596i −0.0882885 0.0882885i
\(568\) 10.3013 + 17.8423i 0.0181360 + 0.0314125i
\(569\) −447.092 258.129i −0.785751 0.453653i 0.0527137 0.998610i \(-0.483213\pi\)
−0.838465 + 0.544956i \(0.816546\pi\)
\(570\) 149.354 40.0192i 0.262024 0.0702092i
\(571\) 813.423i 1.42456i 0.701896 + 0.712279i \(0.252337\pi\)
−0.701896 + 0.712279i \(0.747663\pi\)
\(572\) −133.153 + 11.1628i −0.232784 + 0.0195154i
\(573\) 494.338 0.862720
\(574\) −125.242 467.408i −0.218191 0.814300i
\(575\) 166.591 288.544i 0.289724 0.501816i
\(576\) −41.5692 + 24.0000i −0.0721688 + 0.0416667i
\(577\) 336.660 336.660i 0.583467 0.583467i −0.352388 0.935854i \(-0.614630\pi\)
0.935854 + 0.352388i \(0.114630\pi\)
\(578\) −716.070 191.870i −1.23888 0.331956i
\(579\) 39.6840 148.103i 0.0685388 0.255790i
\(580\) 2.46926 + 2.46926i 0.00425734 + 0.00425734i
\(581\) 488.566 + 846.221i 0.840905 + 1.45649i
\(582\) −288.767 166.720i −0.496164 0.286460i
\(583\) 397.650 106.550i 0.682075 0.182762i
\(584\) 51.0615i 0.0874341i
\(585\) −109.019 156.904i −0.186358 0.268212i
\(586\) −138.358 −0.236105
\(587\) −154.442 576.386i −0.263104 0.981919i −0.963400 0.268066i \(-0.913615\pi\)
0.700296 0.713853i \(-0.253051\pi\)
\(588\) 22.3013 38.6269i 0.0379273 0.0656921i
\(589\) 736.653 425.307i 1.25068 0.722083i
\(590\) −96.1577 + 96.1577i −0.162979 + 0.162979i
\(591\) −628.133 168.308i −1.06283 0.284784i
\(592\) 22.7846 85.0333i 0.0384875 0.143637i
\(593\) 297.953 + 297.953i 0.502450 + 0.502450i 0.912198 0.409749i \(-0.134384\pi\)
−0.409749 + 0.912198i \(0.634384\pi\)
\(594\) 94.4134 + 163.529i 0.158945 + 0.275301i
\(595\) 475.844 + 274.729i 0.799738 + 0.461729i
\(596\) −72.1244 + 19.3257i −0.121014 + 0.0324256i
\(597\) 515.578i 0.863615i
\(598\) 264.758 183.958i 0.442740 0.307623i
\(599\) 996.169 1.66305 0.831527 0.555485i \(-0.187467\pi\)
0.831527 + 0.555485i \(0.187467\pi\)
\(600\) 24.0910 + 89.9090i 0.0401517 + 0.149848i
\(601\) −126.265 + 218.698i −0.210092 + 0.363890i −0.951743 0.306896i \(-0.900710\pi\)
0.741651 + 0.670786i \(0.234043\pi\)
\(602\) 709.456 409.604i 1.17850 0.680406i
\(603\) −210.473 + 210.473i −0.349043 + 0.349043i
\(604\) 440.970 + 118.158i 0.730084 + 0.195625i
\(605\) −59.9667 + 223.799i −0.0991185 + 0.369915i
\(606\) −106.492 106.492i −0.175730 0.175730i
\(607\) 245.321 + 424.909i 0.404154 + 0.700014i 0.994223 0.107338i \(-0.0342328\pi\)
−0.590069 + 0.807353i \(0.700899\pi\)
\(608\) 126.249 + 72.8897i 0.207646 + 0.119884i
\(609\) 9.38080 2.51358i 0.0154036 0.00412739i
\(610\) 99.1000i 0.162459i
\(611\) −50.6846 604.577i −0.0829536 0.989487i
\(612\) −342.200 −0.559150
\(613\) −137.311 512.451i −0.223998 0.835973i −0.982803 0.184655i \(-0.940883\pi\)
0.758805 0.651318i \(-0.225783\pi\)
\(614\) −2.62178 + 4.54105i −0.00427000 + 0.00739585i
\(615\) −159.825 + 92.2750i −0.259878 + 0.150041i
\(616\) 80.8513 80.8513i 0.131252 0.131252i
\(617\) 536.185 + 143.670i 0.869020 + 0.232853i 0.665664 0.746252i \(-0.268148\pi\)
0.203356 + 0.979105i \(0.434815\pi\)
\(618\) 14.7846 55.1769i 0.0239233 0.0892830i
\(619\) 501.483 + 501.483i 0.810151 + 0.810151i 0.984656 0.174505i \(-0.0558327\pi\)
−0.174505 + 0.984656i \(0.555833\pi\)
\(620\) −80.8513 140.038i −0.130405 0.225869i
\(621\) −394.558 227.798i −0.635359 0.366824i
\(622\) −527.338 + 141.300i −0.847811 + 0.227170i
\(623\) 425.414i 0.682847i
\(624\) −15.9615 + 88.6410i −0.0255794 + 0.142053i
\(625\) −211.000 −0.337600
\(626\) 12.8616 + 48.0000i 0.0205456 + 0.0766773i
\(627\) 114.696 198.660i 0.182928 0.316841i
\(628\) 24.9948 14.4308i 0.0398007 0.0229790i
\(629\) 443.781 443.781i 0.705535 0.705535i
\(630\) 157.923 + 42.3154i 0.250672 + 0.0671672i
\(631\) −54.9524 + 205.085i −0.0870878 + 0.325016i −0.995701 0.0926217i \(-0.970475\pi\)
0.908614 + 0.417638i \(0.137142\pi\)
\(632\) −28.7077 28.7077i −0.0454235 0.0454235i
\(633\) 47.2039 + 81.7595i 0.0745717 + 0.129162i
\(634\) 21.7039 + 12.5307i 0.0342333 + 0.0197646i
\(635\) −403.389 + 108.088i −0.635258 + 0.170217i
\(636\) 277.492i 0.436309i
\(637\) 56.6776 + 157.496i 0.0889758 + 0.247246i
\(638\) 5.18069 0.00812020
\(639\) 11.3116 + 42.2154i 0.0177020 + 0.0660648i
\(640\) 13.8564 24.0000i 0.0216506 0.0375000i
\(641\) −69.3499 + 40.0392i −0.108190 + 0.0624636i −0.553119 0.833102i \(-0.686562\pi\)
0.444929 + 0.895566i \(0.353229\pi\)
\(642\) 138.100 138.100i 0.215109 0.215109i
\(643\) −543.346 145.589i −0.845017 0.226422i −0.189763 0.981830i \(-0.560772\pi\)
−0.655254 + 0.755408i \(0.727439\pi\)
\(644\) −71.4026 + 266.478i −0.110874 + 0.413786i
\(645\) −220.923 220.923i −0.342516 0.342516i
\(646\) 519.643 + 900.048i 0.804401 + 1.39326i
\(647\) −1005.44 580.493i −1.55401 0.897208i −0.997809 0.0661597i \(-0.978925\pi\)
−0.556200 0.831048i \(-0.687741\pi\)
\(648\) −24.5885 + 6.58846i −0.0379452 + 0.0101674i
\(649\) 201.746i 0.310857i
\(650\) −316.046 148.772i −0.486224 0.228881i
\(651\) −449.709 −0.690797
\(652\) 12.8076 + 47.7987i 0.0196436 + 0.0733109i
\(653\) −220.045 + 381.129i −0.336975 + 0.583658i −0.983862 0.178928i \(-0.942737\pi\)
0.646887 + 0.762586i \(0.276071\pi\)
\(654\) 310.965 179.536i 0.475482 0.274520i
\(655\) −77.6846 + 77.6846i −0.118603 + 0.118603i
\(656\) −168.067 45.0333i −0.256199 0.0686484i
\(657\) −28.0347 + 104.627i −0.0426708 + 0.159250i
\(658\) 367.104 + 367.104i 0.557908 + 0.557908i
\(659\) −274.521 475.485i −0.416572 0.721524i 0.579020 0.815313i \(-0.303435\pi\)
−0.995592 + 0.0937891i \(0.970102\pi\)
\(660\) −37.7654 21.8038i −0.0572203 0.0330361i
\(661\) 784.429 210.187i 1.18673 0.317983i 0.389137 0.921180i \(-0.372773\pi\)
0.797593 + 0.603196i \(0.206106\pi\)
\(662\) 365.965i 0.552818i
\(663\) −414.515 + 490.377i −0.625212 + 0.739633i
\(664\) 351.349 0.529140
\(665\) −128.515 479.624i −0.193255 0.721239i
\(666\) 93.3731 161.727i 0.140200 0.242833i
\(667\) −10.8252 + 6.24991i −0.0162296 + 0.00937018i
\(668\) −82.9808 + 82.9808i −0.124223 + 0.124223i
\(669\) −254.653 68.2339i −0.380647 0.101994i
\(670\) 44.4782 165.995i 0.0663854 0.247754i
\(671\) −103.960 103.960i −0.154932 0.154932i
\(672\) −38.5359 66.7461i −0.0573451 0.0993246i
\(673\) 367.385 + 212.110i 0.545891 + 0.315170i 0.747463 0.664303i \(-0.231272\pi\)
−0.201572 + 0.979474i \(0.564605\pi\)
\(674\) −129.699 + 34.7527i −0.192431 + 0.0515618i
\(675\) 493.634i 0.731310i
\(676\) −215.378 260.492i −0.318607 0.385344i
\(677\) 124.308 0.183616 0.0918078 0.995777i \(-0.470735\pi\)
0.0918078 + 0.995777i \(0.470735\pi\)
\(678\) 112.214 + 418.786i 0.165507 + 0.617679i
\(679\) −535.392 + 927.325i −0.788500 + 1.36572i
\(680\) 171.100 98.7846i 0.251618 0.145271i
\(681\) −263.706 + 263.706i −0.387233 + 0.387233i
\(682\) −231.722 62.0897i −0.339768 0.0910405i
\(683\) −11.2551 + 42.0045i −0.0164789 + 0.0614999i −0.973676 0.227938i \(-0.926802\pi\)
0.957197 + 0.289438i \(0.0934684\pi\)
\(684\) 218.669 + 218.669i 0.319692 + 0.319692i
\(685\) 115.356 + 199.802i 0.168403 + 0.291682i
\(686\) 348.021 + 200.930i 0.507319 + 0.292901i
\(687\) 21.8494 5.85452i 0.0318040 0.00852186i
\(688\) 294.564i 0.428145i
\(689\) 795.300 + 672.267i 1.15428 + 0.975713i
\(690\) 105.215 0.152486
\(691\) −195.327 728.970i −0.282673 1.05495i −0.950523 0.310654i \(-0.899452\pi\)
0.667850 0.744295i \(-0.267215\pi\)
\(692\) 71.7602 124.292i 0.103700 0.179613i
\(693\) 210.058 121.277i 0.303114 0.175003i
\(694\) −104.460 + 104.460i −0.150519 + 0.150519i
\(695\) −45.4186 12.1699i −0.0653505 0.0175106i
\(696\) 0.903811 3.37307i 0.00129858 0.00484636i
\(697\) −877.125 877.125i −1.25843 1.25843i
\(698\) 57.1558 + 98.9967i 0.0818851 + 0.141829i
\(699\) 595.592 + 343.865i 0.852063 + 0.491939i
\(700\) 288.727 77.3641i 0.412467 0.110520i
\(701\) 847.213i 1.20858i 0.796766 + 0.604289i \(0.206543\pi\)
−0.796766 + 0.604289i \(0.793457\pi\)
\(702\) −203.433 + 432.163i −0.289790 + 0.615617i
\(703\) −567.161 −0.806773
\(704\) −10.6410 39.7128i −0.0151151 0.0564102i
\(705\) 99.0000 171.473i 0.140426 0.243224i
\(706\) −208.886 + 120.601i −0.295873 + 0.170822i
\(707\) −341.981 + 341.981i −0.483708 + 0.483708i
\(708\) 131.354 + 35.1962i 0.185528 + 0.0497121i
\(709\) −209.535 + 781.996i −0.295536 + 1.10296i 0.645254 + 0.763968i \(0.276751\pi\)
−0.940791 + 0.338988i \(0.889915\pi\)
\(710\) −17.8423 17.8423i −0.0251300 0.0251300i
\(711\) −43.0615 74.5847i −0.0605647 0.104901i
\(712\) −132.473 76.4833i −0.186058 0.107420i
\(713\) 559.092 149.808i 0.784140 0.210110i
\(714\) 549.458i 0.769548i
\(715\) 153.983 55.4134i 0.215360 0.0775013i
\(716\) −321.349 −0.448811
\(717\) −125.963 470.102i −0.175681 0.655651i
\(718\) −102.058 + 176.769i −0.142142 + 0.246197i
\(719\) −685.421 + 395.728i −0.953298 + 0.550387i −0.894104 0.447860i \(-0.852186\pi\)
−0.0591940 + 0.998246i \(0.518853\pi\)
\(720\) 41.5692 41.5692i 0.0577350 0.0577350i
\(721\) −177.191 47.4782i −0.245757 0.0658505i
\(722\) 110.947 414.061i 0.153667 0.573492i
\(723\) 400.662 + 400.662i 0.554166 + 0.554166i
\(724\) −143.072 247.808i −0.197613 0.342276i
\(725\) 11.7290 + 6.77172i 0.0161779 + 0.00934031i
\(726\) 223.799 59.9667i 0.308263 0.0825987i
\(727\) 1014.52i 1.39549i −0.716345 0.697746i \(-0.754186\pi\)
0.716345 0.697746i \(-0.245814\pi\)
\(728\) 284.655 + 51.2576i 0.391010 + 0.0704088i
\(729\) 351.000 0.481481
\(730\) −16.1858 60.4064i −0.0221724 0.0827485i
\(731\) 1050.00 1818.65i 1.43639 2.48789i
\(732\) −85.8231 + 49.5500i −0.117245 + 0.0676912i
\(733\) 769.697 769.697i 1.05006 1.05006i 0.0513857 0.998679i \(-0.483636\pi\)
0.998679 0.0513857i \(-0.0163638\pi\)
\(734\) 652.566 + 174.855i 0.889054 + 0.238221i
\(735\) −14.1384 + 52.7654i −0.0192360 + 0.0717896i
\(736\) 70.1436 + 70.1436i 0.0953038 + 0.0953038i
\(737\) −127.476 220.794i −0.172966 0.299585i
\(738\) −319.650 184.550i −0.433130 0.250068i
\(739\) −255.155 + 68.3686i −0.345271 + 0.0925150i −0.427287 0.904116i \(-0.640531\pi\)
0.0820164 + 0.996631i \(0.473864\pi\)
\(740\) 107.818i 0.145700i
\(741\) 578.235 48.4763i 0.780344 0.0654201i
\(742\) −891.118 −1.20097
\(743\) 202.345 + 755.161i 0.272335 + 1.01637i 0.957606 + 0.288080i \(0.0930168\pi\)
−0.685272 + 0.728287i \(0.740317\pi\)
\(744\) −80.8513 + 140.038i −0.108671 + 0.188224i
\(745\) 79.1980 45.7250i 0.106306 0.0613759i
\(746\) −515.487 + 515.487i −0.691001 + 0.691001i
\(747\) 719.927 + 192.904i 0.963757 + 0.258238i
\(748\) 75.8616 283.119i 0.101419 0.378502i
\(749\) −443.484 443.484i −0.592101 0.592101i
\(750\) −132.000 228.631i −0.176000 0.304841i
\(751\) 640.663 + 369.887i 0.853080 + 0.492526i 0.861689 0.507437i \(-0.169407\pi\)
−0.00860865 + 0.999963i \(0.502740\pi\)
\(752\) 180.315 48.3154i 0.239781 0.0642491i
\(753\) 268.535i 0.356620i
\(754\) 7.47768 + 10.7621i 0.00991735 + 0.0142733i
\(755\) −559.128 −0.740567
\(756\) −105.788 394.808i −0.139932 0.522232i
\(757\) −368.437 + 638.152i −0.486707 + 0.843001i −0.999883 0.0152821i \(-0.995135\pi\)
0.513176 + 0.858283i \(0.328469\pi\)
\(758\) 335.242 193.552i 0.442271 0.255345i
\(759\) 110.375 110.375i 0.145422 0.145422i
\(760\) −172.459 46.2102i −0.226920 0.0608029i
\(761\) 370.661 1383.33i 0.487071 1.81777i −0.0834780 0.996510i \(-0.526603\pi\)
0.570549 0.821264i \(-0.306731\pi\)
\(762\) 295.301 + 295.301i 0.387534 + 0.387534i
\(763\) −576.548 998.611i −0.755633