Properties

Label 26.2.b
Level $26$
Weight $2$
Character orbit 26.b
Rep. character $\chi_{26}(25,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 26.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(26, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2 q - 2 q^{3} - 2 q^{4} - 4 q^{9} + 6 q^{10} + 2 q^{12} + 4 q^{13} - 6 q^{14} + 2 q^{16} + 6 q^{17} - 12 q^{23} - 8 q^{25} - 6 q^{26} + 10 q^{27} - 6 q^{30} + 18 q^{35} + 4 q^{36} + 12 q^{38} - 4 q^{39}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(26, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
26.2.b.a 26.b 13.b $2$ $0.208$ \(\Q(\sqrt{-1}) \) None 26.2.b.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{3}-q^{4}-3 i q^{5}-i q^{6}+\cdots\)