Properties

Label 2592.2.s.f.1727.1
Level $2592$
Weight $2$
Character 2592.1727
Analytic conductor $20.697$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1727.1
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2592.1727
Dual form 2592.2.s.f.863.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.67303 + 0.965926i) q^{5} +(0.633975 + 0.366025i) q^{7} +O(q^{10})\) \(q+(-1.67303 + 0.965926i) q^{5} +(0.633975 + 0.366025i) q^{7} +(-2.63896 + 4.57081i) q^{11} +(-2.23205 - 3.86603i) q^{13} +0.896575i q^{17} -1.26795i q^{19} +(-0.707107 - 1.22474i) q^{23} +(-0.633975 + 1.09808i) q^{25} +(4.69093 + 2.70831i) q^{29} +(6.46410 - 3.73205i) q^{31} -1.41421 q^{35} -7.73205 q^{37} +(0.328169 - 0.189469i) q^{41} +(-7.56218 - 4.36603i) q^{43} +(2.31079 - 4.00240i) q^{47} +(-3.23205 - 5.59808i) q^{49} -2.44949i q^{53} -10.1962i q^{55} +(-5.41662 - 9.38186i) q^{59} +(0.598076 - 1.03590i) q^{61} +(7.46859 + 4.31199i) q^{65} +(11.3660 - 6.56218i) q^{67} +13.2827 q^{71} -13.7321 q^{73} +(-3.34607 + 1.93185i) q^{77} +(14.3660 + 8.29423i) q^{79} +(-5.27792 + 9.14162i) q^{83} +(-0.866025 - 1.50000i) q^{85} -14.9372i q^{89} -3.26795i q^{91} +(1.22474 + 2.12132i) q^{95} +(3.19615 - 5.53590i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 12 q^{7} - 4 q^{13} - 12 q^{25} + 24 q^{31} - 48 q^{37} - 12 q^{43} - 12 q^{49} - 16 q^{61} + 84 q^{67} - 96 q^{73} + 108 q^{79} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.67303 + 0.965926i −0.748203 + 0.431975i −0.825044 0.565068i \(-0.808850\pi\)
0.0768413 + 0.997043i \(0.475517\pi\)
\(6\) 0 0
\(7\) 0.633975 + 0.366025i 0.239620 + 0.138345i 0.615002 0.788526i \(-0.289155\pi\)
−0.375382 + 0.926870i \(0.622489\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.63896 + 4.57081i −0.795676 + 1.37815i 0.126733 + 0.991937i \(0.459551\pi\)
−0.922409 + 0.386214i \(0.873783\pi\)
\(12\) 0 0
\(13\) −2.23205 3.86603i −0.619060 1.07224i −0.989658 0.143449i \(-0.954181\pi\)
0.370598 0.928793i \(-0.379153\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.896575i 0.217451i 0.994072 + 0.108726i \(0.0346770\pi\)
−0.994072 + 0.108726i \(0.965323\pi\)
\(18\) 0 0
\(19\) 1.26795i 0.290887i −0.989367 0.145444i \(-0.953539\pi\)
0.989367 0.145444i \(-0.0464610\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.707107 1.22474i −0.147442 0.255377i 0.782839 0.622224i \(-0.213771\pi\)
−0.930281 + 0.366847i \(0.880437\pi\)
\(24\) 0 0
\(25\) −0.633975 + 1.09808i −0.126795 + 0.219615i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.69093 + 2.70831i 0.871084 + 0.502920i 0.867708 0.497074i \(-0.165592\pi\)
0.00337538 + 0.999994i \(0.498926\pi\)
\(30\) 0 0
\(31\) 6.46410 3.73205i 1.16099 0.670296i 0.209447 0.977820i \(-0.432834\pi\)
0.951540 + 0.307524i \(0.0995004\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) −7.73205 −1.27114 −0.635571 0.772043i \(-0.719235\pi\)
−0.635571 + 0.772043i \(0.719235\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.328169 0.189469i 0.0512514 0.0295900i −0.474155 0.880441i \(-0.657246\pi\)
0.525407 + 0.850851i \(0.323913\pi\)
\(42\) 0 0
\(43\) −7.56218 4.36603i −1.15322 0.665813i −0.203551 0.979064i \(-0.565248\pi\)
−0.949670 + 0.313252i \(0.898582\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.31079 4.00240i 0.337063 0.583811i −0.646816 0.762646i \(-0.723900\pi\)
0.983879 + 0.178836i \(0.0572331\pi\)
\(48\) 0 0
\(49\) −3.23205 5.59808i −0.461722 0.799725i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.44949i 0.336463i −0.985747 0.168232i \(-0.946194\pi\)
0.985747 0.168232i \(-0.0538057\pi\)
\(54\) 0 0
\(55\) 10.1962i 1.37485i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.41662 9.38186i −0.705184 1.22141i −0.966625 0.256194i \(-0.917531\pi\)
0.261442 0.965219i \(-0.415802\pi\)
\(60\) 0 0
\(61\) 0.598076 1.03590i 0.0765758 0.132633i −0.825195 0.564848i \(-0.808935\pi\)
0.901770 + 0.432215i \(0.142268\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.46859 + 4.31199i 0.926364 + 0.534837i
\(66\) 0 0
\(67\) 11.3660 6.56218i 1.38858 0.801698i 0.395426 0.918498i \(-0.370597\pi\)
0.993155 + 0.116800i \(0.0372638\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.2827 1.57637 0.788185 0.615439i \(-0.211021\pi\)
0.788185 + 0.615439i \(0.211021\pi\)
\(72\) 0 0
\(73\) −13.7321 −1.60721 −0.803607 0.595160i \(-0.797089\pi\)
−0.803607 + 0.595160i \(0.797089\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.34607 + 1.93185i −0.381320 + 0.220155i
\(78\) 0 0
\(79\) 14.3660 + 8.29423i 1.61630 + 0.933174i 0.987865 + 0.155315i \(0.0496392\pi\)
0.628439 + 0.777859i \(0.283694\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.27792 + 9.14162i −0.579327 + 1.00342i 0.416230 + 0.909259i \(0.363351\pi\)
−0.995557 + 0.0941638i \(0.969982\pi\)
\(84\) 0 0
\(85\) −0.866025 1.50000i −0.0939336 0.162698i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.9372i 1.58334i −0.610951 0.791669i \(-0.709213\pi\)
0.610951 0.791669i \(-0.290787\pi\)
\(90\) 0 0
\(91\) 3.26795i 0.342574i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.22474 + 2.12132i 0.125656 + 0.217643i
\(96\) 0 0
\(97\) 3.19615 5.53590i 0.324520 0.562085i −0.656895 0.753982i \(-0.728131\pi\)
0.981415 + 0.191897i \(0.0614639\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.46739 3.15660i −0.544025 0.314093i 0.202683 0.979244i \(-0.435034\pi\)
−0.746709 + 0.665151i \(0.768367\pi\)
\(102\) 0 0
\(103\) −3.46410 + 2.00000i −0.341328 + 0.197066i −0.660859 0.750510i \(-0.729808\pi\)
0.319531 + 0.947576i \(0.396475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.79315 0.173350 0.0866752 0.996237i \(-0.472376\pi\)
0.0866752 + 0.996237i \(0.472376\pi\)
\(108\) 0 0
\(109\) 3.92820 0.376254 0.188127 0.982145i \(-0.439758\pi\)
0.188127 + 0.982145i \(0.439758\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.5068 + 10.1075i −1.64690 + 0.950838i −0.668605 + 0.743617i \(0.733108\pi\)
−0.978294 + 0.207221i \(0.933558\pi\)
\(114\) 0 0
\(115\) 2.36603 + 1.36603i 0.220633 + 0.127383i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.328169 + 0.568406i −0.0300832 + 0.0521057i
\(120\) 0 0
\(121\) −8.42820 14.5981i −0.766200 1.32710i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1087i 1.08304i
\(126\) 0 0
\(127\) 21.1244i 1.87448i −0.348680 0.937242i \(-0.613370\pi\)
0.348680 0.937242i \(-0.386630\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.0507680 + 0.0879327i 0.00443562 + 0.00768272i 0.868235 0.496154i \(-0.165255\pi\)
−0.863799 + 0.503836i \(0.831921\pi\)
\(132\) 0 0
\(133\) 0.464102 0.803848i 0.0402427 0.0697024i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.21046 2.43091i −0.359723 0.207686i 0.309236 0.950985i \(-0.399927\pi\)
−0.668959 + 0.743299i \(0.733260\pi\)
\(138\) 0 0
\(139\) 10.7321 6.19615i 0.910281 0.525551i 0.0297592 0.999557i \(-0.490526\pi\)
0.880521 + 0.474006i \(0.157193\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 23.5612 1.97028
\(144\) 0 0
\(145\) −10.4641 −0.868996
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.58510 + 0.915158i −0.129856 + 0.0749727i −0.563521 0.826102i \(-0.690554\pi\)
0.433665 + 0.901074i \(0.357220\pi\)
\(150\) 0 0
\(151\) −0.928203 0.535898i −0.0755361 0.0436108i 0.461756 0.887007i \(-0.347219\pi\)
−0.537292 + 0.843396i \(0.680553\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.20977 + 12.4877i −0.579103 + 1.00304i
\(156\) 0 0
\(157\) −5.33013 9.23205i −0.425390 0.736798i 0.571066 0.820904i \(-0.306530\pi\)
−0.996457 + 0.0841060i \(0.973197\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.03528i 0.0815912i
\(162\) 0 0
\(163\) 1.60770i 0.125924i −0.998016 0.0629622i \(-0.979945\pi\)
0.998016 0.0629622i \(-0.0200548\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.32868 9.22955i −0.412346 0.714204i 0.582800 0.812616i \(-0.301957\pi\)
−0.995146 + 0.0984115i \(0.968624\pi\)
\(168\) 0 0
\(169\) −3.46410 + 6.00000i −0.266469 + 0.461538i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.58991 + 5.53674i 0.729107 + 0.420950i 0.818095 0.575082i \(-0.195030\pi\)
−0.0889883 + 0.996033i \(0.528363\pi\)
\(174\) 0 0
\(175\) −0.803848 + 0.464102i −0.0607652 + 0.0350828i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.8695 −1.63461 −0.817303 0.576208i \(-0.804532\pi\)
−0.817303 + 0.576208i \(0.804532\pi\)
\(180\) 0 0
\(181\) −23.3205 −1.73340 −0.866700 0.498830i \(-0.833763\pi\)
−0.866700 + 0.498830i \(0.833763\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.9360 7.46859i 0.951072 0.549101i
\(186\) 0 0
\(187\) −4.09808 2.36603i −0.299681 0.173021i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.2277 17.7148i 0.740048 1.28180i −0.212425 0.977177i \(-0.568136\pi\)
0.952473 0.304623i \(-0.0985305\pi\)
\(192\) 0 0
\(193\) 4.23205 + 7.33013i 0.304630 + 0.527634i 0.977179 0.212418i \(-0.0681340\pi\)
−0.672549 + 0.740052i \(0.734801\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.76079i 0.695428i 0.937601 + 0.347714i \(0.113042\pi\)
−0.937601 + 0.347714i \(0.886958\pi\)
\(198\) 0 0
\(199\) 8.00000i 0.567105i −0.958957 0.283552i \(-0.908487\pi\)
0.958957 0.283552i \(-0.0915130\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.98262 + 3.43400i 0.139153 + 0.241019i
\(204\) 0 0
\(205\) −0.366025 + 0.633975i −0.0255643 + 0.0442787i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.79555 + 3.34607i 0.400887 + 0.231452i
\(210\) 0 0
\(211\) 16.5622 9.56218i 1.14019 0.658287i 0.193710 0.981059i \(-0.437948\pi\)
0.946477 + 0.322771i \(0.104614\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.8690 1.15046
\(216\) 0 0
\(217\) 5.46410 0.370927
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.46618 2.00120i 0.233161 0.134615i
\(222\) 0 0
\(223\) −14.9545 8.63397i −1.00143 0.578174i −0.0927563 0.995689i \(-0.529568\pi\)
−0.908670 + 0.417515i \(0.862901\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.67475 + 15.0251i −0.575763 + 0.997251i 0.420195 + 0.907434i \(0.361962\pi\)
−0.995958 + 0.0898175i \(0.971372\pi\)
\(228\) 0 0
\(229\) −5.50000 9.52628i −0.363450 0.629514i 0.625076 0.780564i \(-0.285068\pi\)
−0.988526 + 0.151050i \(0.951735\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.8009i 1.23169i 0.787869 + 0.615843i \(0.211185\pi\)
−0.787869 + 0.615843i \(0.788815\pi\)
\(234\) 0 0
\(235\) 8.92820i 0.582412i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.52056 16.4901i −0.615834 1.06666i −0.990238 0.139390i \(-0.955486\pi\)
0.374404 0.927266i \(-0.377847\pi\)
\(240\) 0 0
\(241\) 8.06218 13.9641i 0.519331 0.899507i −0.480417 0.877040i \(-0.659515\pi\)
0.999748 0.0224667i \(-0.00715197\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.8147 + 6.24384i 0.690923 + 0.398904i
\(246\) 0 0
\(247\) −4.90192 + 2.83013i −0.311902 + 0.180077i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.8386 −1.50468 −0.752338 0.658777i \(-0.771074\pi\)
−0.752338 + 0.658777i \(0.771074\pi\)
\(252\) 0 0
\(253\) 7.46410 0.469264
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.688524 + 0.397520i −0.0429490 + 0.0247966i −0.521321 0.853361i \(-0.674560\pi\)
0.478372 + 0.878157i \(0.341227\pi\)
\(258\) 0 0
\(259\) −4.90192 2.83013i −0.304591 0.175856i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.72500 6.45189i 0.229694 0.397841i −0.728024 0.685552i \(-0.759561\pi\)
0.957717 + 0.287711i \(0.0928943\pi\)
\(264\) 0 0
\(265\) 2.36603 + 4.09808i 0.145344 + 0.251743i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.7661i 1.38807i −0.719939 0.694037i \(-0.755830\pi\)
0.719939 0.694037i \(-0.244170\pi\)
\(270\) 0 0
\(271\) 13.2679i 0.805971i 0.915206 + 0.402985i \(0.132027\pi\)
−0.915206 + 0.402985i \(0.867973\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.34607 5.79555i −0.201775 0.349485i
\(276\) 0 0
\(277\) −0.535898 + 0.928203i −0.0321990 + 0.0557703i −0.881676 0.471856i \(-0.843584\pi\)
0.849477 + 0.527626i \(0.176918\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.91808 + 5.72620i 0.591663 + 0.341597i 0.765755 0.643133i \(-0.222366\pi\)
−0.174092 + 0.984729i \(0.555699\pi\)
\(282\) 0 0
\(283\) 16.7321 9.66025i 0.994617 0.574242i 0.0879660 0.996123i \(-0.471963\pi\)
0.906651 + 0.421881i \(0.138630\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.277401 0.0163745
\(288\) 0 0
\(289\) 16.1962 0.952715
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.6126 + 11.9007i −1.20420 + 0.695246i −0.961487 0.274852i \(-0.911371\pi\)
−0.242715 + 0.970098i \(0.578038\pi\)
\(294\) 0 0
\(295\) 18.1244 + 10.4641i 1.05524 + 0.609244i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.15660 + 5.46739i −0.182551 + 0.316187i
\(300\) 0 0
\(301\) −3.19615 5.53590i −0.184223 0.319084i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.31079i 0.132315i
\(306\) 0 0
\(307\) 18.0000i 1.02731i 0.857996 + 0.513657i \(0.171710\pi\)
−0.857996 + 0.513657i \(0.828290\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.1087 + 20.9730i 0.686624 + 1.18927i 0.972923 + 0.231128i \(0.0742415\pi\)
−0.286299 + 0.958140i \(0.592425\pi\)
\(312\) 0 0
\(313\) −14.1603 + 24.5263i −0.800385 + 1.38631i 0.118978 + 0.992897i \(0.462038\pi\)
−0.919363 + 0.393410i \(0.871295\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.33178 3.65565i −0.355628 0.205322i 0.311533 0.950235i \(-0.399157\pi\)
−0.667161 + 0.744913i \(0.732491\pi\)
\(318\) 0 0
\(319\) −24.7583 + 14.2942i −1.38620 + 0.800323i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.13681 0.0632539
\(324\) 0 0
\(325\) 5.66025 0.313974
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.92996 1.69161i 0.161534 0.0932618i
\(330\) 0 0
\(331\) 6.75833 + 3.90192i 0.371471 + 0.214469i 0.674101 0.738639i \(-0.264531\pi\)
−0.302630 + 0.953108i \(0.597865\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.6772 + 21.9575i −0.692627 + 1.19967i
\(336\) 0 0
\(337\) 2.46410 + 4.26795i 0.134228 + 0.232490i 0.925302 0.379230i \(-0.123811\pi\)
−0.791074 + 0.611720i \(0.790478\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 39.3949i 2.13335i
\(342\) 0 0
\(343\) 9.85641i 0.532196i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.88160 + 11.9193i 0.369424 + 0.639860i 0.989476 0.144700i \(-0.0462218\pi\)
−0.620052 + 0.784561i \(0.712888\pi\)
\(348\) 0 0
\(349\) 1.07180 1.85641i 0.0573720 0.0993712i −0.835913 0.548862i \(-0.815061\pi\)
0.893285 + 0.449491i \(0.148395\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.2311 13.9898i −1.28969 0.744604i −0.311092 0.950380i \(-0.600695\pi\)
−0.978599 + 0.205776i \(0.934028\pi\)
\(354\) 0 0
\(355\) −22.2224 + 12.8301i −1.17944 + 0.680952i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.44949 0.129279 0.0646396 0.997909i \(-0.479410\pi\)
0.0646396 + 0.997909i \(0.479410\pi\)
\(360\) 0 0
\(361\) 17.3923 0.915384
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.9742 13.2641i 1.20252 0.694277i
\(366\) 0 0
\(367\) 10.8564 + 6.26795i 0.566700 + 0.327184i 0.755830 0.654768i \(-0.227234\pi\)
−0.189130 + 0.981952i \(0.560567\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.896575 1.55291i 0.0465479 0.0806233i
\(372\) 0 0
\(373\) 16.1244 + 27.9282i 0.834887 + 1.44607i 0.894122 + 0.447823i \(0.147801\pi\)
−0.0592345 + 0.998244i \(0.518866\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.1803i 1.24535i
\(378\) 0 0
\(379\) 14.3923i 0.739283i 0.929174 + 0.369642i \(0.120520\pi\)
−0.929174 + 0.369642i \(0.879480\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.60849 + 16.6424i 0.490971 + 0.850387i 0.999946 0.0103947i \(-0.00330879\pi\)
−0.508975 + 0.860781i \(0.669975\pi\)
\(384\) 0 0
\(385\) 3.73205 6.46410i 0.190203 0.329441i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.29392 5.36585i −0.471221 0.272059i 0.245530 0.969389i \(-0.421038\pi\)
−0.716751 + 0.697330i \(0.754371\pi\)
\(390\) 0 0
\(391\) 1.09808 0.633975i 0.0555321 0.0320615i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −32.0464 −1.61243
\(396\) 0 0
\(397\) 21.5885 1.08349 0.541747 0.840542i \(-0.317763\pi\)
0.541747 + 0.840542i \(0.317763\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.2820 + 9.40044i −0.813086 + 0.469436i −0.848026 0.529954i \(-0.822209\pi\)
0.0349403 + 0.999389i \(0.488876\pi\)
\(402\) 0 0
\(403\) −28.8564 16.6603i −1.43744 0.829906i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.4046 35.3417i 1.01142 1.75182i
\(408\) 0 0
\(409\) −7.40192 12.8205i −0.366002 0.633933i 0.622935 0.782274i \(-0.285940\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.93048i 0.390233i
\(414\) 0 0
\(415\) 20.3923i 1.00102i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.795040 1.37705i −0.0388402 0.0672732i 0.845952 0.533259i \(-0.179033\pi\)
−0.884792 + 0.465986i \(0.845700\pi\)
\(420\) 0 0
\(421\) −4.42820 + 7.66987i −0.215817 + 0.373807i −0.953525 0.301313i \(-0.902575\pi\)
0.737708 + 0.675120i \(0.235908\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.984508 0.568406i −0.0477557 0.0275717i
\(426\) 0 0
\(427\) 0.758330 0.437822i 0.0366982 0.0211877i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.48528 0.408722 0.204361 0.978896i \(-0.434488\pi\)
0.204361 + 0.978896i \(0.434488\pi\)
\(432\) 0 0
\(433\) −34.1769 −1.64244 −0.821219 0.570613i \(-0.806706\pi\)
−0.821219 + 0.570613i \(0.806706\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.55291 + 0.896575i −0.0742860 + 0.0428890i
\(438\) 0 0
\(439\) 6.46410 + 3.73205i 0.308515 + 0.178121i 0.646262 0.763116i \(-0.276331\pi\)
−0.337747 + 0.941237i \(0.609665\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.52245 14.7613i 0.404914 0.701331i −0.589398 0.807843i \(-0.700635\pi\)
0.994311 + 0.106512i \(0.0339682\pi\)
\(444\) 0 0
\(445\) 14.4282 + 24.9904i 0.683962 + 1.18466i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.0064i 1.08574i 0.839818 + 0.542868i \(0.182662\pi\)
−0.839818 + 0.542868i \(0.817338\pi\)
\(450\) 0 0
\(451\) 2.00000i 0.0941763i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.15660 + 5.46739i 0.147984 + 0.256315i
\(456\) 0 0
\(457\) 1.40192 2.42820i 0.0655792 0.113587i −0.831372 0.555717i \(-0.812444\pi\)
0.896951 + 0.442130i \(0.145777\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.8589 17.8164i −1.43724 0.829791i −0.439583 0.898202i \(-0.644874\pi\)
−0.997657 + 0.0684108i \(0.978207\pi\)
\(462\) 0 0
\(463\) −15.9282 + 9.19615i −0.740246 + 0.427381i −0.822159 0.569258i \(-0.807231\pi\)
0.0819125 + 0.996640i \(0.473897\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0716 0.558606 0.279303 0.960203i \(-0.409897\pi\)
0.279303 + 0.960203i \(0.409897\pi\)
\(468\) 0 0
\(469\) 9.60770 0.443642
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 39.9125 23.0435i 1.83518 1.05954i
\(474\) 0 0
\(475\) 1.39230 + 0.803848i 0.0638833 + 0.0368831i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.6443 27.0967i 0.714805 1.23808i −0.248229 0.968701i \(-0.579849\pi\)
0.963035 0.269378i \(-0.0868181\pi\)
\(480\) 0 0
\(481\) 17.2583 + 29.8923i 0.786912 + 1.36297i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.3490i 0.560739i
\(486\) 0 0
\(487\) 36.9282i 1.67338i 0.547679 + 0.836688i \(0.315511\pi\)
−0.547679 + 0.836688i \(0.684489\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.12184 12.3354i −0.321404 0.556688i 0.659374 0.751815i \(-0.270821\pi\)
−0.980778 + 0.195127i \(0.937488\pi\)
\(492\) 0 0
\(493\) −2.42820 + 4.20577i −0.109361 + 0.189418i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.42091 + 4.86181i 0.377729 + 0.218082i
\(498\) 0 0
\(499\) −31.5622 + 18.2224i −1.41292 + 0.815748i −0.995662 0.0930414i \(-0.970341\pi\)
−0.417255 + 0.908790i \(0.637008\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.1165 −1.29824 −0.649120 0.760686i \(-0.724863\pi\)
−0.649120 + 0.760686i \(0.724863\pi\)
\(504\) 0 0
\(505\) 12.1962 0.542722
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.9957 18.4727i 1.41818 0.818788i 0.422044 0.906575i \(-0.361313\pi\)
0.996139 + 0.0877870i \(0.0279795\pi\)
\(510\) 0 0
\(511\) −8.70577 5.02628i −0.385121 0.222350i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.86370 6.69213i 0.170255 0.294891i
\(516\) 0 0
\(517\) 12.1962 + 21.1244i 0.536386 + 0.929048i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.2789i 0.669383i −0.942328 0.334691i \(-0.891368\pi\)
0.942328 0.334691i \(-0.108632\pi\)
\(522\) 0 0
\(523\) 16.1962i 0.708208i 0.935206 + 0.354104i \(0.115214\pi\)
−0.935206 + 0.354104i \(0.884786\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.34607 + 5.79555i 0.145757 + 0.252458i
\(528\) 0 0
\(529\) 10.5000 18.1865i 0.456522 0.790719i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.46498 0.845807i −0.0634554 0.0366360i
\(534\) 0 0
\(535\) −3.00000 + 1.73205i −0.129701 + 0.0748831i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34.1170 1.46952
\(540\) 0 0
\(541\) 7.00000 0.300954 0.150477 0.988614i \(-0.451919\pi\)
0.150477 + 0.988614i \(0.451919\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.57201 + 3.79435i −0.281514 + 0.162532i
\(546\) 0 0
\(547\) −1.14359 0.660254i −0.0488965 0.0282304i 0.475352 0.879795i \(-0.342321\pi\)
−0.524249 + 0.851565i \(0.675654\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.43400 5.94786i 0.146293 0.253387i
\(552\) 0 0
\(553\) 6.07180 + 10.5167i 0.258199 + 0.447214i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.03339i 0.0861574i 0.999072 + 0.0430787i \(0.0137166\pi\)
−0.999072 + 0.0430787i \(0.986283\pi\)
\(558\) 0 0
\(559\) 38.9808i 1.64871i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.27981 + 7.41284i 0.180372 + 0.312414i 0.942007 0.335592i \(-0.108936\pi\)
−0.761635 + 0.648006i \(0.775603\pi\)
\(564\) 0 0
\(565\) 19.5263 33.8205i 0.821477 1.42284i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.09154 3.51695i −0.255371 0.147438i 0.366850 0.930280i \(-0.380436\pi\)
−0.622221 + 0.782842i \(0.713769\pi\)
\(570\) 0 0
\(571\) −34.5167 + 19.9282i −1.44448 + 0.833969i −0.998144 0.0608975i \(-0.980604\pi\)
−0.446333 + 0.894867i \(0.647270\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.79315 0.0747796
\(576\) 0 0
\(577\) 18.4641 0.768671 0.384335 0.923194i \(-0.374431\pi\)
0.384335 + 0.923194i \(0.374431\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.69213 + 3.86370i −0.277636 + 0.160293i
\(582\) 0 0
\(583\) 11.1962 + 6.46410i 0.463697 + 0.267716i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.845807 1.46498i 0.0349102 0.0604663i −0.848042 0.529928i \(-0.822219\pi\)
0.882953 + 0.469462i \(0.155552\pi\)
\(588\) 0 0
\(589\) −4.73205 8.19615i −0.194981 0.337717i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.1488i 0.868478i 0.900798 + 0.434239i \(0.142983\pi\)
−0.900798 + 0.434239i \(0.857017\pi\)
\(594\) 0 0
\(595\) 1.26795i 0.0519808i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.20977 12.4877i −0.294583 0.510233i 0.680305 0.732929i \(-0.261847\pi\)
−0.974888 + 0.222696i \(0.928514\pi\)
\(600\) 0 0
\(601\) −1.89230 + 3.27757i −0.0771887 + 0.133695i −0.902036 0.431661i \(-0.857928\pi\)
0.824847 + 0.565356i \(0.191261\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 28.2013 + 16.2820i 1.14655 + 0.661959i
\(606\) 0 0
\(607\) 5.83013 3.36603i 0.236638 0.136623i −0.376993 0.926216i \(-0.623042\pi\)
0.613630 + 0.789593i \(0.289709\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.6312 −0.834649
\(612\) 0 0
\(613\) 13.6077 0.549610 0.274805 0.961500i \(-0.411387\pi\)
0.274805 + 0.961500i \(0.411387\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.03699 4.64016i 0.323557 0.186806i −0.329420 0.944184i \(-0.606853\pi\)
0.652977 + 0.757378i \(0.273520\pi\)
\(618\) 0 0
\(619\) 4.26795 + 2.46410i 0.171543 + 0.0990406i 0.583313 0.812247i \(-0.301756\pi\)
−0.411770 + 0.911288i \(0.635089\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.46739 9.46979i 0.219046 0.379399i
\(624\) 0 0
\(625\) 8.52628 + 14.7679i 0.341051 + 0.590718i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.93237i 0.276412i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 20.4046 + 35.3417i 0.809730 + 1.40249i
\(636\) 0 0
\(637\) −14.4282 + 24.9904i −0.571666 + 0.990155i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −32.1158 18.5421i −1.26850 0.732367i −0.293794 0.955869i \(-0.594918\pi\)
−0.974704 + 0.223502i \(0.928251\pi\)
\(642\) 0 0
\(643\) 3.46410 2.00000i 0.136611 0.0788723i −0.430137 0.902764i \(-0.641535\pi\)
0.566748 + 0.823891i \(0.308201\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.6660 −0.655206 −0.327603 0.944815i \(-0.606241\pi\)
−0.327603 + 0.944815i \(0.606241\pi\)
\(648\) 0 0
\(649\) 57.1769 2.24439
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.64566 + 5.56892i −0.377464 + 0.217929i −0.676714 0.736246i \(-0.736597\pi\)
0.299251 + 0.954175i \(0.403263\pi\)
\(654\) 0 0
\(655\) −0.169873 0.0980762i −0.00663749 0.00383215i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.8840 + 18.8516i −0.423981 + 0.734356i −0.996325 0.0856577i \(-0.972701\pi\)
0.572344 + 0.820014i \(0.306034\pi\)
\(660\) 0 0
\(661\) 4.25833 + 7.37564i 0.165630 + 0.286879i 0.936879 0.349654i \(-0.113701\pi\)
−0.771249 + 0.636534i \(0.780368\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.79315i 0.0695354i
\(666\) 0 0
\(667\) 7.66025i 0.296606i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.15660 + 5.46739i 0.121859 + 0.211066i
\(672\) 0 0
\(673\) −15.1603 + 26.2583i −0.584385 + 1.01218i 0.410567 + 0.911830i \(0.365331\pi\)
−0.994952 + 0.100354i \(0.968003\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33.6130 19.4064i −1.29185 0.745850i −0.312869 0.949796i \(-0.601290\pi\)
−0.978982 + 0.203946i \(0.934623\pi\)
\(678\) 0 0
\(679\) 4.05256 2.33975i 0.155523 0.0897912i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.37945 −0.205839 −0.102920 0.994690i \(-0.532818\pi\)
−0.102920 + 0.994690i \(0.532818\pi\)
\(684\) 0 0
\(685\) 9.39230 0.358862
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.46979 + 5.46739i −0.360770 + 0.208291i
\(690\) 0 0
\(691\) 2.24167 + 1.29423i 0.0852771 + 0.0492348i 0.542032 0.840358i \(-0.317655\pi\)
−0.456755 + 0.889593i \(0.650988\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.9700 + 20.7327i −0.454050 + 0.786437i
\(696\) 0 0
\(697\) 0.169873 + 0.294229i 0.00643440 + 0.0111447i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.06918i 0.304769i −0.988321 0.152384i \(-0.951305\pi\)
0.988321 0.152384i \(-0.0486952\pi\)
\(702\) 0 0
\(703\) 9.80385i 0.369759i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.31079 4.00240i −0.0869062 0.150526i
\(708\) 0 0
\(709\) 6.50000 11.2583i 0.244113 0.422815i −0.717769 0.696281i \(-0.754837\pi\)
0.961882 + 0.273466i \(0.0881700\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.14162 5.27792i −0.342356 0.197660i
\(714\) 0 0
\(715\) −39.4186 + 22.7583i −1.47417 + 0.851113i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −36.3906 −1.35714 −0.678570 0.734535i \(-0.737400\pi\)
−0.678570 + 0.734535i \(0.737400\pi\)
\(720\) 0 0
\(721\) −2.92820 −0.109052
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.94786 + 3.43400i −0.220898 + 0.127535i
\(726\) 0 0
\(727\) −22.4378 12.9545i −0.832173 0.480455i 0.0224233 0.999749i \(-0.492862\pi\)
−0.854596 + 0.519293i \(0.826195\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.91447 6.78006i 0.144782 0.250770i
\(732\) 0 0
\(733\) −19.6603 34.0526i −0.726168 1.25776i −0.958491 0.285121i \(-0.907966\pi\)
0.232323 0.972639i \(-0.425367\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 69.2693i 2.55157i
\(738\) 0 0
\(739\) 32.0000i 1.17714i 0.808447 + 0.588570i \(0.200309\pi\)
−0.808447 + 0.588570i \(0.799691\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.9000 + 25.8076i 0.546628 + 0.946788i 0.998502 + 0.0547064i \(0.0174223\pi\)
−0.451874 + 0.892082i \(0.649244\pi\)
\(744\) 0 0
\(745\) 1.76795 3.06218i 0.0647726 0.112190i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.13681 + 0.656339i 0.0415382 + 0.0239821i
\(750\) 0 0
\(751\) −8.15064 + 4.70577i −0.297421 + 0.171716i −0.641284 0.767304i \(-0.721598\pi\)
0.343863 + 0.939020i \(0.388264\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.07055 0.0753551
\(756\) 0 0
\(757\) −24.7846 −0.900812 −0.450406 0.892824i \(-0.648721\pi\)
−0.450406 + 0.892824i \(0.648721\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.82534 1.05386i 0.0661684 0.0382023i −0.466551 0.884494i \(-0.654504\pi\)
0.532719 + 0.846292i \(0.321170\pi\)
\(762\) 0 0
\(763\) 2.49038 + 1.43782i 0.0901578 + 0.0520527i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.1803 + 41.8816i −0.873101 + 1.51226i
\(768\) 0 0
\(769\) 20.0167 + 34.6699i 0.721819 + 1.25023i 0.960270 + 0.279073i \(0.0900271\pi\)
−0.238451 + 0.971155i \(0.576640\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.9745i 1.29391i 0.762527 + 0.646957i \(0.223959\pi\)
−0.762527 + 0.646957i \(0.776041\pi\)
\(774\) 0 0
\(775\) 9.46410i 0.339961i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.240237 0.416102i −0.00860737 0.0149084i
\(780\) 0 0
\(781\) −35.0526 + 60.7128i −1.25428 + 2.17248i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.8350 + 10.2970i 0.636557 + 0.367516i
\(786\) 0 0
\(787\) 21.4186 12.3660i 0.763490 0.440801i −0.0670573 0.997749i \(-0.521361\pi\)
0.830547 + 0.556948i \(0.188028\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.7985 −0.526173
\(792\) 0 0
\(793\) −5.33975 −0.189620
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 44.3632 25.6131i 1.57143 0.907264i 0.575432 0.817850i \(-0.304834\pi\)
0.995995 0.0894138i \(-0.0284994\pi\)
\(798\) 0 0
\(799\) 3.58846 + 2.07180i 0.126950 + 0.0732949i
\(800\) 0 0
\(801\) 0 0
\(802\) 0