Properties

Label 2592.2.i.v
Level $2592$
Weight $2$
Character orbit 2592.i
Analytic conductor $20.697$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 864)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{5} + ( 3 - 3 \zeta_{6} ) q^{7} +O(q^{10})\) \( q + 2 \zeta_{6} q^{5} + ( 3 - 3 \zeta_{6} ) q^{7} + ( -6 + 6 \zeta_{6} ) q^{11} + 3 \zeta_{6} q^{13} + 2 q^{17} + 3 q^{19} -6 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} + ( -8 + 8 \zeta_{6} ) q^{29} + 6 q^{35} + 7 q^{37} + 8 \zeta_{6} q^{41} + ( -12 + 12 \zeta_{6} ) q^{43} + ( -6 + 6 \zeta_{6} ) q^{47} -2 \zeta_{6} q^{49} -4 q^{53} -12 q^{55} -6 \zeta_{6} q^{59} + ( 1 - \zeta_{6} ) q^{61} + ( -6 + 6 \zeta_{6} ) q^{65} -3 \zeta_{6} q^{67} + 12 q^{71} -15 q^{73} + 18 \zeta_{6} q^{77} + ( 9 - 9 \zeta_{6} ) q^{79} + ( 12 - 12 \zeta_{6} ) q^{83} + 4 \zeta_{6} q^{85} + 10 q^{89} + 9 q^{91} + 6 \zeta_{6} q^{95} + ( -9 + 9 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 3 q^{7} + O(q^{10}) \) \( 2 q + 2 q^{5} + 3 q^{7} - 6 q^{11} + 3 q^{13} + 4 q^{17} + 6 q^{19} - 6 q^{23} + q^{25} - 8 q^{29} + 12 q^{35} + 14 q^{37} + 8 q^{41} - 12 q^{43} - 6 q^{47} - 2 q^{49} - 8 q^{53} - 24 q^{55} - 6 q^{59} + q^{61} - 6 q^{65} - 3 q^{67} + 24 q^{71} - 30 q^{73} + 18 q^{77} + 9 q^{79} + 12 q^{83} + 4 q^{85} + 20 q^{89} + 18 q^{91} + 6 q^{95} - 9 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
865.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.00000 + 1.73205i 0 1.50000 2.59808i 0 0 0
1729.1 0 0 0 1.00000 1.73205i 0 1.50000 + 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2592.2.i.v 2
3.b odd 2 1 2592.2.i.g 2
4.b odd 2 1 2592.2.i.r 2
9.c even 3 1 864.2.a.a 1
9.c even 3 1 inner 2592.2.i.v 2
9.d odd 6 1 864.2.a.i yes 1
9.d odd 6 1 2592.2.i.g 2
12.b even 2 1 2592.2.i.c 2
36.f odd 6 1 864.2.a.d yes 1
36.f odd 6 1 2592.2.i.r 2
36.h even 6 1 864.2.a.l yes 1
36.h even 6 1 2592.2.i.c 2
72.j odd 6 1 1728.2.a.e 1
72.l even 6 1 1728.2.a.h 1
72.n even 6 1 1728.2.a.u 1
72.p odd 6 1 1728.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
864.2.a.a 1 9.c even 3 1
864.2.a.d yes 1 36.f odd 6 1
864.2.a.i yes 1 9.d odd 6 1
864.2.a.l yes 1 36.h even 6 1
1728.2.a.e 1 72.j odd 6 1
1728.2.a.h 1 72.l even 6 1
1728.2.a.u 1 72.n even 6 1
1728.2.a.x 1 72.p odd 6 1
2592.2.i.c 2 12.b even 2 1
2592.2.i.c 2 36.h even 6 1
2592.2.i.g 2 3.b odd 2 1
2592.2.i.g 2 9.d odd 6 1
2592.2.i.r 2 4.b odd 2 1
2592.2.i.r 2 36.f odd 6 1
2592.2.i.v 2 1.a even 1 1 trivial
2592.2.i.v 2 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2592, [\chi])\):

\( T_{5}^{2} - 2 T_{5} + 4 \)
\( T_{7}^{2} - 3 T_{7} + 9 \)
\( T_{11}^{2} + 6 T_{11} + 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 4 - 2 T + T^{2} \)
$7$ \( 9 - 3 T + T^{2} \)
$11$ \( 36 + 6 T + T^{2} \)
$13$ \( 9 - 3 T + T^{2} \)
$17$ \( ( -2 + T )^{2} \)
$19$ \( ( -3 + T )^{2} \)
$23$ \( 36 + 6 T + T^{2} \)
$29$ \( 64 + 8 T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( ( -7 + T )^{2} \)
$41$ \( 64 - 8 T + T^{2} \)
$43$ \( 144 + 12 T + T^{2} \)
$47$ \( 36 + 6 T + T^{2} \)
$53$ \( ( 4 + T )^{2} \)
$59$ \( 36 + 6 T + T^{2} \)
$61$ \( 1 - T + T^{2} \)
$67$ \( 9 + 3 T + T^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( ( 15 + T )^{2} \)
$79$ \( 81 - 9 T + T^{2} \)
$83$ \( 144 - 12 T + T^{2} \)
$89$ \( ( -10 + T )^{2} \)
$97$ \( 81 + 9 T + T^{2} \)
show more
show less