# Properties

 Label 2592.2.i.f Level $2592$ Weight $2$ Character orbit 2592.i Analytic conductor $20.697$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2592 = 2^{5} \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2592.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$20.6972242039$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 864) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -2 \zeta_{6} q^{5} + ( 1 - \zeta_{6} ) q^{7} +O(q^{10})$$ $$q -2 \zeta_{6} q^{5} + ( 1 - \zeta_{6} ) q^{7} + ( 2 - 2 \zeta_{6} ) q^{11} -\zeta_{6} q^{13} + 6 q^{17} + 5 q^{19} -6 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} + ( -8 + 8 \zeta_{6} ) q^{29} + 8 \zeta_{6} q^{31} -2 q^{35} -5 q^{37} -8 \zeta_{6} q^{41} + ( -4 + 4 \zeta_{6} ) q^{43} + ( 10 - 10 \zeta_{6} ) q^{47} + 6 \zeta_{6} q^{49} + 4 q^{53} -4 q^{55} -14 \zeta_{6} q^{59} + ( -3 + 3 \zeta_{6} ) q^{61} + ( -2 + 2 \zeta_{6} ) q^{65} -13 \zeta_{6} q^{67} -4 q^{71} + 9 q^{73} -2 \zeta_{6} q^{77} + ( 11 - 11 \zeta_{6} ) q^{79} + ( 12 - 12 \zeta_{6} ) q^{83} -12 \zeta_{6} q^{85} -2 q^{89} - q^{91} -10 \zeta_{6} q^{95} + ( -1 + \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{5} + q^{7} + O(q^{10})$$ $$2q - 2q^{5} + q^{7} + 2q^{11} - q^{13} + 12q^{17} + 10q^{19} - 6q^{23} + q^{25} - 8q^{29} + 8q^{31} - 4q^{35} - 10q^{37} - 8q^{41} - 4q^{43} + 10q^{47} + 6q^{49} + 8q^{53} - 8q^{55} - 14q^{59} - 3q^{61} - 2q^{65} - 13q^{67} - 8q^{71} + 18q^{73} - 2q^{77} + 11q^{79} + 12q^{83} - 12q^{85} - 4q^{89} - 2q^{91} - 10q^{95} - q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1217$$ $$2431$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
865.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −1.00000 1.73205i 0 0.500000 0.866025i 0 0 0
1729.1 0 0 0 −1.00000 + 1.73205i 0 0.500000 + 0.866025i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2592.2.i.f 2
3.b odd 2 1 2592.2.i.u 2
4.b odd 2 1 2592.2.i.d 2
9.c even 3 1 864.2.a.j yes 1
9.c even 3 1 inner 2592.2.i.f 2
9.d odd 6 1 864.2.a.b 1
9.d odd 6 1 2592.2.i.u 2
12.b even 2 1 2592.2.i.s 2
36.f odd 6 1 864.2.a.k yes 1
36.f odd 6 1 2592.2.i.d 2
36.h even 6 1 864.2.a.c yes 1
36.h even 6 1 2592.2.i.s 2
72.j odd 6 1 1728.2.a.v 1
72.l even 6 1 1728.2.a.w 1
72.n even 6 1 1728.2.a.f 1
72.p odd 6 1 1728.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
864.2.a.b 1 9.d odd 6 1
864.2.a.c yes 1 36.h even 6 1
864.2.a.j yes 1 9.c even 3 1
864.2.a.k yes 1 36.f odd 6 1
1728.2.a.f 1 72.n even 6 1
1728.2.a.g 1 72.p odd 6 1
1728.2.a.v 1 72.j odd 6 1
1728.2.a.w 1 72.l even 6 1
2592.2.i.d 2 4.b odd 2 1
2592.2.i.d 2 36.f odd 6 1
2592.2.i.f 2 1.a even 1 1 trivial
2592.2.i.f 2 9.c even 3 1 inner
2592.2.i.s 2 12.b even 2 1
2592.2.i.s 2 36.h even 6 1
2592.2.i.u 2 3.b odd 2 1
2592.2.i.u 2 9.d odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2592, [\chi])$$:

 $$T_{5}^{2} + 2 T_{5} + 4$$ $$T_{7}^{2} - T_{7} + 1$$ $$T_{11}^{2} - 2 T_{11} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$4 + 2 T + T^{2}$$
$7$ $$1 - T + T^{2}$$
$11$ $$4 - 2 T + T^{2}$$
$13$ $$1 + T + T^{2}$$
$17$ $$( -6 + T )^{2}$$
$19$ $$( -5 + T )^{2}$$
$23$ $$36 + 6 T + T^{2}$$
$29$ $$64 + 8 T + T^{2}$$
$31$ $$64 - 8 T + T^{2}$$
$37$ $$( 5 + T )^{2}$$
$41$ $$64 + 8 T + T^{2}$$
$43$ $$16 + 4 T + T^{2}$$
$47$ $$100 - 10 T + T^{2}$$
$53$ $$( -4 + T )^{2}$$
$59$ $$196 + 14 T + T^{2}$$
$61$ $$9 + 3 T + T^{2}$$
$67$ $$169 + 13 T + T^{2}$$
$71$ $$( 4 + T )^{2}$$
$73$ $$( -9 + T )^{2}$$
$79$ $$121 - 11 T + T^{2}$$
$83$ $$144 - 12 T + T^{2}$$
$89$ $$( 2 + T )^{2}$$
$97$ $$1 + T + T^{2}$$