Properties

Label 2576.2.a.v.1.3
Level $2576$
Weight $2$
Character 2576.1
Self dual yes
Analytic conductor $20.569$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2576,2,Mod(1,2576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2576.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2576 = 2^{4} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2576.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-2,0,2,0,3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.5694635607\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 2576.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17009 q^{3} -1.17009 q^{5} +1.00000 q^{7} -1.63090 q^{9} -3.70928 q^{11} +4.34017 q^{13} -1.36910 q^{15} +3.17009 q^{17} -5.26180 q^{19} +1.17009 q^{21} -1.00000 q^{23} -3.63090 q^{25} -5.41855 q^{27} +0.630898 q^{29} -9.32684 q^{31} -4.34017 q^{33} -1.17009 q^{35} -3.07838 q^{37} +5.07838 q^{39} +2.68035 q^{41} +8.49693 q^{43} +1.90829 q^{45} -6.09171 q^{47} +1.00000 q^{49} +3.70928 q^{51} +4.15676 q^{53} +4.34017 q^{55} -6.15676 q^{57} +8.40522 q^{59} -6.92881 q^{61} -1.63090 q^{63} -5.07838 q^{65} -9.86603 q^{67} -1.17009 q^{69} -10.8371 q^{71} -13.0205 q^{73} -4.24846 q^{75} -3.70928 q^{77} +4.38962 q^{79} -1.44748 q^{81} -14.6537 q^{83} -3.70928 q^{85} +0.738205 q^{87} -6.77205 q^{89} +4.34017 q^{91} -10.9132 q^{93} +6.15676 q^{95} +8.58864 q^{97} +6.04945 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + 2 q^{5} + 3 q^{7} - q^{9} - 4 q^{11} + 2 q^{13} - 8 q^{15} + 4 q^{17} - 8 q^{19} - 2 q^{21} - 3 q^{23} - 7 q^{25} - 2 q^{27} - 2 q^{29} - 16 q^{31} - 2 q^{33} + 2 q^{35} - 6 q^{37} + 12 q^{39}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17009 0.675550 0.337775 0.941227i \(-0.390326\pi\)
0.337775 + 0.941227i \(0.390326\pi\)
\(4\) 0 0
\(5\) −1.17009 −0.523279 −0.261639 0.965166i \(-0.584263\pi\)
−0.261639 + 0.965166i \(0.584263\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.63090 −0.543633
\(10\) 0 0
\(11\) −3.70928 −1.11839 −0.559194 0.829037i \(-0.688889\pi\)
−0.559194 + 0.829037i \(0.688889\pi\)
\(12\) 0 0
\(13\) 4.34017 1.20375 0.601874 0.798591i \(-0.294421\pi\)
0.601874 + 0.798591i \(0.294421\pi\)
\(14\) 0 0
\(15\) −1.36910 −0.353501
\(16\) 0 0
\(17\) 3.17009 0.768859 0.384429 0.923154i \(-0.374398\pi\)
0.384429 + 0.923154i \(0.374398\pi\)
\(18\) 0 0
\(19\) −5.26180 −1.20714 −0.603569 0.797311i \(-0.706255\pi\)
−0.603569 + 0.797311i \(0.706255\pi\)
\(20\) 0 0
\(21\) 1.17009 0.255334
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) −3.63090 −0.726180
\(26\) 0 0
\(27\) −5.41855 −1.04280
\(28\) 0 0
\(29\) 0.630898 0.117155 0.0585774 0.998283i \(-0.481344\pi\)
0.0585774 + 0.998283i \(0.481344\pi\)
\(30\) 0 0
\(31\) −9.32684 −1.67515 −0.837575 0.546322i \(-0.816027\pi\)
−0.837575 + 0.546322i \(0.816027\pi\)
\(32\) 0 0
\(33\) −4.34017 −0.755527
\(34\) 0 0
\(35\) −1.17009 −0.197781
\(36\) 0 0
\(37\) −3.07838 −0.506082 −0.253041 0.967456i \(-0.581431\pi\)
−0.253041 + 0.967456i \(0.581431\pi\)
\(38\) 0 0
\(39\) 5.07838 0.813191
\(40\) 0 0
\(41\) 2.68035 0.418600 0.209300 0.977852i \(-0.432882\pi\)
0.209300 + 0.977852i \(0.432882\pi\)
\(42\) 0 0
\(43\) 8.49693 1.29577 0.647885 0.761738i \(-0.275654\pi\)
0.647885 + 0.761738i \(0.275654\pi\)
\(44\) 0 0
\(45\) 1.90829 0.284471
\(46\) 0 0
\(47\) −6.09171 −0.888567 −0.444284 0.895886i \(-0.646542\pi\)
−0.444284 + 0.895886i \(0.646542\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.70928 0.519402
\(52\) 0 0
\(53\) 4.15676 0.570974 0.285487 0.958383i \(-0.407845\pi\)
0.285487 + 0.958383i \(0.407845\pi\)
\(54\) 0 0
\(55\) 4.34017 0.585229
\(56\) 0 0
\(57\) −6.15676 −0.815482
\(58\) 0 0
\(59\) 8.40522 1.09427 0.547133 0.837046i \(-0.315719\pi\)
0.547133 + 0.837046i \(0.315719\pi\)
\(60\) 0 0
\(61\) −6.92881 −0.887143 −0.443572 0.896239i \(-0.646289\pi\)
−0.443572 + 0.896239i \(0.646289\pi\)
\(62\) 0 0
\(63\) −1.63090 −0.205474
\(64\) 0 0
\(65\) −5.07838 −0.629895
\(66\) 0 0
\(67\) −9.86603 −1.20533 −0.602664 0.797995i \(-0.705894\pi\)
−0.602664 + 0.797995i \(0.705894\pi\)
\(68\) 0 0
\(69\) −1.17009 −0.140862
\(70\) 0 0
\(71\) −10.8371 −1.28613 −0.643064 0.765813i \(-0.722337\pi\)
−0.643064 + 0.765813i \(0.722337\pi\)
\(72\) 0 0
\(73\) −13.0205 −1.52394 −0.761968 0.647614i \(-0.775767\pi\)
−0.761968 + 0.647614i \(0.775767\pi\)
\(74\) 0 0
\(75\) −4.24846 −0.490570
\(76\) 0 0
\(77\) −3.70928 −0.422711
\(78\) 0 0
\(79\) 4.38962 0.493871 0.246935 0.969032i \(-0.420576\pi\)
0.246935 + 0.969032i \(0.420576\pi\)
\(80\) 0 0
\(81\) −1.44748 −0.160831
\(82\) 0 0
\(83\) −14.6537 −1.60845 −0.804225 0.594324i \(-0.797420\pi\)
−0.804225 + 0.594324i \(0.797420\pi\)
\(84\) 0 0
\(85\) −3.70928 −0.402327
\(86\) 0 0
\(87\) 0.738205 0.0791439
\(88\) 0 0
\(89\) −6.77205 −0.717836 −0.358918 0.933369i \(-0.616854\pi\)
−0.358918 + 0.933369i \(0.616854\pi\)
\(90\) 0 0
\(91\) 4.34017 0.454974
\(92\) 0 0
\(93\) −10.9132 −1.13165
\(94\) 0 0
\(95\) 6.15676 0.631670
\(96\) 0 0
\(97\) 8.58864 0.872044 0.436022 0.899936i \(-0.356387\pi\)
0.436022 + 0.899936i \(0.356387\pi\)
\(98\) 0 0
\(99\) 6.04945 0.607992
\(100\) 0 0
\(101\) −4.92162 −0.489720 −0.244860 0.969558i \(-0.578742\pi\)
−0.244860 + 0.969558i \(0.578742\pi\)
\(102\) 0 0
\(103\) −16.6803 −1.64356 −0.821782 0.569803i \(-0.807020\pi\)
−0.821782 + 0.569803i \(0.807020\pi\)
\(104\) 0 0
\(105\) −1.36910 −0.133611
\(106\) 0 0
\(107\) 15.3340 1.48240 0.741198 0.671286i \(-0.234258\pi\)
0.741198 + 0.671286i \(0.234258\pi\)
\(108\) 0 0
\(109\) −11.1773 −1.07059 −0.535294 0.844666i \(-0.679799\pi\)
−0.535294 + 0.844666i \(0.679799\pi\)
\(110\) 0 0
\(111\) −3.60197 −0.341884
\(112\) 0 0
\(113\) 13.5174 1.27161 0.635807 0.771848i \(-0.280667\pi\)
0.635807 + 0.771848i \(0.280667\pi\)
\(114\) 0 0
\(115\) 1.17009 0.109111
\(116\) 0 0
\(117\) −7.07838 −0.654396
\(118\) 0 0
\(119\) 3.17009 0.290601
\(120\) 0 0
\(121\) 2.75872 0.250793
\(122\) 0 0
\(123\) 3.13624 0.282785
\(124\) 0 0
\(125\) 10.0989 0.903273
\(126\) 0 0
\(127\) −2.92162 −0.259252 −0.129626 0.991563i \(-0.541378\pi\)
−0.129626 + 0.991563i \(0.541378\pi\)
\(128\) 0 0
\(129\) 9.94214 0.875357
\(130\) 0 0
\(131\) 6.27513 0.548260 0.274130 0.961693i \(-0.411610\pi\)
0.274130 + 0.961693i \(0.411610\pi\)
\(132\) 0 0
\(133\) −5.26180 −0.456256
\(134\) 0 0
\(135\) 6.34017 0.545675
\(136\) 0 0
\(137\) 7.75872 0.662873 0.331436 0.943478i \(-0.392467\pi\)
0.331436 + 0.943478i \(0.392467\pi\)
\(138\) 0 0
\(139\) 2.92881 0.248418 0.124209 0.992256i \(-0.460361\pi\)
0.124209 + 0.992256i \(0.460361\pi\)
\(140\) 0 0
\(141\) −7.12783 −0.600271
\(142\) 0 0
\(143\) −16.0989 −1.34626
\(144\) 0 0
\(145\) −0.738205 −0.0613046
\(146\) 0 0
\(147\) 1.17009 0.0965071
\(148\) 0 0
\(149\) 0.837101 0.0685780 0.0342890 0.999412i \(-0.489083\pi\)
0.0342890 + 0.999412i \(0.489083\pi\)
\(150\) 0 0
\(151\) −15.9155 −1.29518 −0.647592 0.761988i \(-0.724224\pi\)
−0.647592 + 0.761988i \(0.724224\pi\)
\(152\) 0 0
\(153\) −5.17009 −0.417977
\(154\) 0 0
\(155\) 10.9132 0.876570
\(156\) 0 0
\(157\) −11.1701 −0.891470 −0.445735 0.895165i \(-0.647058\pi\)
−0.445735 + 0.895165i \(0.647058\pi\)
\(158\) 0 0
\(159\) 4.86376 0.385722
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) −14.6225 −1.14532 −0.572661 0.819792i \(-0.694089\pi\)
−0.572661 + 0.819792i \(0.694089\pi\)
\(164\) 0 0
\(165\) 5.07838 0.395351
\(166\) 0 0
\(167\) −6.00719 −0.464850 −0.232425 0.972614i \(-0.574666\pi\)
−0.232425 + 0.972614i \(0.574666\pi\)
\(168\) 0 0
\(169\) 5.83710 0.449008
\(170\) 0 0
\(171\) 8.58145 0.656240
\(172\) 0 0
\(173\) 14.0989 1.07192 0.535960 0.844244i \(-0.319950\pi\)
0.535960 + 0.844244i \(0.319950\pi\)
\(174\) 0 0
\(175\) −3.63090 −0.274470
\(176\) 0 0
\(177\) 9.83483 0.739231
\(178\) 0 0
\(179\) 18.1256 1.35477 0.677384 0.735630i \(-0.263114\pi\)
0.677384 + 0.735630i \(0.263114\pi\)
\(180\) 0 0
\(181\) 12.4319 0.924054 0.462027 0.886866i \(-0.347122\pi\)
0.462027 + 0.886866i \(0.347122\pi\)
\(182\) 0 0
\(183\) −8.10731 −0.599309
\(184\) 0 0
\(185\) 3.60197 0.264822
\(186\) 0 0
\(187\) −11.7587 −0.859883
\(188\) 0 0
\(189\) −5.41855 −0.394142
\(190\) 0 0
\(191\) 4.86376 0.351930 0.175965 0.984396i \(-0.443696\pi\)
0.175965 + 0.984396i \(0.443696\pi\)
\(192\) 0 0
\(193\) −17.2351 −1.24061 −0.620306 0.784360i \(-0.712992\pi\)
−0.620306 + 0.784360i \(0.712992\pi\)
\(194\) 0 0
\(195\) −5.94214 −0.425526
\(196\) 0 0
\(197\) −12.5236 −0.892269 −0.446134 0.894966i \(-0.647200\pi\)
−0.446134 + 0.894966i \(0.647200\pi\)
\(198\) 0 0
\(199\) −1.16290 −0.0824357 −0.0412178 0.999150i \(-0.513124\pi\)
−0.0412178 + 0.999150i \(0.513124\pi\)
\(200\) 0 0
\(201\) −11.5441 −0.814259
\(202\) 0 0
\(203\) 0.630898 0.0442803
\(204\) 0 0
\(205\) −3.13624 −0.219044
\(206\) 0 0
\(207\) 1.63090 0.113355
\(208\) 0 0
\(209\) 19.5174 1.35005
\(210\) 0 0
\(211\) −4.76487 −0.328027 −0.164013 0.986458i \(-0.552444\pi\)
−0.164013 + 0.986458i \(0.552444\pi\)
\(212\) 0 0
\(213\) −12.6803 −0.868843
\(214\) 0 0
\(215\) −9.94214 −0.678048
\(216\) 0 0
\(217\) −9.32684 −0.633147
\(218\) 0 0
\(219\) −15.2351 −1.02949
\(220\) 0 0
\(221\) 13.7587 0.925512
\(222\) 0 0
\(223\) 21.3679 1.43090 0.715450 0.698664i \(-0.246222\pi\)
0.715450 + 0.698664i \(0.246222\pi\)
\(224\) 0 0
\(225\) 5.92162 0.394775
\(226\) 0 0
\(227\) 5.84324 0.387830 0.193915 0.981018i \(-0.437881\pi\)
0.193915 + 0.981018i \(0.437881\pi\)
\(228\) 0 0
\(229\) 2.85658 0.188768 0.0943839 0.995536i \(-0.469912\pi\)
0.0943839 + 0.995536i \(0.469912\pi\)
\(230\) 0 0
\(231\) −4.34017 −0.285562
\(232\) 0 0
\(233\) −13.5259 −0.886108 −0.443054 0.896495i \(-0.646105\pi\)
−0.443054 + 0.896495i \(0.646105\pi\)
\(234\) 0 0
\(235\) 7.12783 0.464968
\(236\) 0 0
\(237\) 5.13624 0.333634
\(238\) 0 0
\(239\) −4.76487 −0.308214 −0.154107 0.988054i \(-0.549250\pi\)
−0.154107 + 0.988054i \(0.549250\pi\)
\(240\) 0 0
\(241\) 24.4775 1.57673 0.788366 0.615207i \(-0.210928\pi\)
0.788366 + 0.615207i \(0.210928\pi\)
\(242\) 0 0
\(243\) 14.5620 0.934151
\(244\) 0 0
\(245\) −1.17009 −0.0747541
\(246\) 0 0
\(247\) −22.8371 −1.45309
\(248\) 0 0
\(249\) −17.1461 −1.08659
\(250\) 0 0
\(251\) 26.2557 1.65724 0.828621 0.559810i \(-0.189126\pi\)
0.828621 + 0.559810i \(0.189126\pi\)
\(252\) 0 0
\(253\) 3.70928 0.233200
\(254\) 0 0
\(255\) −4.34017 −0.271792
\(256\) 0 0
\(257\) 7.84324 0.489248 0.244624 0.969618i \(-0.421335\pi\)
0.244624 + 0.969618i \(0.421335\pi\)
\(258\) 0 0
\(259\) −3.07838 −0.191281
\(260\) 0 0
\(261\) −1.02893 −0.0636891
\(262\) 0 0
\(263\) −10.9132 −0.672937 −0.336469 0.941695i \(-0.609233\pi\)
−0.336469 + 0.941695i \(0.609233\pi\)
\(264\) 0 0
\(265\) −4.86376 −0.298779
\(266\) 0 0
\(267\) −7.92389 −0.484934
\(268\) 0 0
\(269\) −3.57531 −0.217990 −0.108995 0.994042i \(-0.534763\pi\)
−0.108995 + 0.994042i \(0.534763\pi\)
\(270\) 0 0
\(271\) 5.98053 0.363291 0.181646 0.983364i \(-0.441858\pi\)
0.181646 + 0.983364i \(0.441858\pi\)
\(272\) 0 0
\(273\) 5.07838 0.307357
\(274\) 0 0
\(275\) 13.4680 0.812151
\(276\) 0 0
\(277\) −13.3112 −0.799795 −0.399898 0.916560i \(-0.630954\pi\)
−0.399898 + 0.916560i \(0.630954\pi\)
\(278\) 0 0
\(279\) 15.2111 0.910666
\(280\) 0 0
\(281\) −2.13009 −0.127071 −0.0635354 0.997980i \(-0.520238\pi\)
−0.0635354 + 0.997980i \(0.520238\pi\)
\(282\) 0 0
\(283\) −13.6742 −0.812847 −0.406423 0.913685i \(-0.633224\pi\)
−0.406423 + 0.913685i \(0.633224\pi\)
\(284\) 0 0
\(285\) 7.20394 0.426724
\(286\) 0 0
\(287\) 2.68035 0.158216
\(288\) 0 0
\(289\) −6.95055 −0.408856
\(290\) 0 0
\(291\) 10.0494 0.589109
\(292\) 0 0
\(293\) −13.2690 −0.775182 −0.387591 0.921831i \(-0.626693\pi\)
−0.387591 + 0.921831i \(0.626693\pi\)
\(294\) 0 0
\(295\) −9.83483 −0.572606
\(296\) 0 0
\(297\) 20.0989 1.16626
\(298\) 0 0
\(299\) −4.34017 −0.250999
\(300\) 0 0
\(301\) 8.49693 0.489755
\(302\) 0 0
\(303\) −5.75872 −0.330830
\(304\) 0 0
\(305\) 8.10731 0.464223
\(306\) 0 0
\(307\) 17.5103 0.999363 0.499682 0.866209i \(-0.333450\pi\)
0.499682 + 0.866209i \(0.333450\pi\)
\(308\) 0 0
\(309\) −19.5174 −1.11031
\(310\) 0 0
\(311\) −2.03385 −0.115329 −0.0576645 0.998336i \(-0.518365\pi\)
−0.0576645 + 0.998336i \(0.518365\pi\)
\(312\) 0 0
\(313\) 12.3786 0.699677 0.349839 0.936810i \(-0.386236\pi\)
0.349839 + 0.936810i \(0.386236\pi\)
\(314\) 0 0
\(315\) 1.90829 0.107520
\(316\) 0 0
\(317\) −20.1483 −1.13164 −0.565822 0.824527i \(-0.691441\pi\)
−0.565822 + 0.824527i \(0.691441\pi\)
\(318\) 0 0
\(319\) −2.34017 −0.131025
\(320\) 0 0
\(321\) 17.9421 1.00143
\(322\) 0 0
\(323\) −16.6803 −0.928119
\(324\) 0 0
\(325\) −15.7587 −0.874137
\(326\) 0 0
\(327\) −13.0784 −0.723236
\(328\) 0 0
\(329\) −6.09171 −0.335847
\(330\) 0 0
\(331\) 6.70701 0.368650 0.184325 0.982865i \(-0.440990\pi\)
0.184325 + 0.982865i \(0.440990\pi\)
\(332\) 0 0
\(333\) 5.02052 0.275123
\(334\) 0 0
\(335\) 11.5441 0.630722
\(336\) 0 0
\(337\) −29.0205 −1.58085 −0.790424 0.612560i \(-0.790140\pi\)
−0.790424 + 0.612560i \(0.790140\pi\)
\(338\) 0 0
\(339\) 15.8166 0.859039
\(340\) 0 0
\(341\) 34.5958 1.87347
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 1.36910 0.0737100
\(346\) 0 0
\(347\) 18.2413 0.979243 0.489622 0.871935i \(-0.337135\pi\)
0.489622 + 0.871935i \(0.337135\pi\)
\(348\) 0 0
\(349\) −8.35455 −0.447209 −0.223604 0.974680i \(-0.571782\pi\)
−0.223604 + 0.974680i \(0.571782\pi\)
\(350\) 0 0
\(351\) −23.5174 −1.25527
\(352\) 0 0
\(353\) −31.5897 −1.68135 −0.840675 0.541541i \(-0.817841\pi\)
−0.840675 + 0.541541i \(0.817841\pi\)
\(354\) 0 0
\(355\) 12.6803 0.673003
\(356\) 0 0
\(357\) 3.70928 0.196316
\(358\) 0 0
\(359\) 4.48852 0.236895 0.118447 0.992960i \(-0.462208\pi\)
0.118447 + 0.992960i \(0.462208\pi\)
\(360\) 0 0
\(361\) 8.68649 0.457184
\(362\) 0 0
\(363\) 3.22795 0.169423
\(364\) 0 0
\(365\) 15.2351 0.797443
\(366\) 0 0
\(367\) 18.7526 0.978877 0.489438 0.872038i \(-0.337202\pi\)
0.489438 + 0.872038i \(0.337202\pi\)
\(368\) 0 0
\(369\) −4.37137 −0.227564
\(370\) 0 0
\(371\) 4.15676 0.215808
\(372\) 0 0
\(373\) 22.5113 1.16559 0.582796 0.812619i \(-0.301959\pi\)
0.582796 + 0.812619i \(0.301959\pi\)
\(374\) 0 0
\(375\) 11.8166 0.610206
\(376\) 0 0
\(377\) 2.73820 0.141025
\(378\) 0 0
\(379\) 22.3318 1.14711 0.573553 0.819169i \(-0.305565\pi\)
0.573553 + 0.819169i \(0.305565\pi\)
\(380\) 0 0
\(381\) −3.41855 −0.175138
\(382\) 0 0
\(383\) −15.2351 −0.778479 −0.389239 0.921137i \(-0.627262\pi\)
−0.389239 + 0.921137i \(0.627262\pi\)
\(384\) 0 0
\(385\) 4.34017 0.221196
\(386\) 0 0
\(387\) −13.8576 −0.704422
\(388\) 0 0
\(389\) 21.3874 1.08438 0.542191 0.840255i \(-0.317595\pi\)
0.542191 + 0.840255i \(0.317595\pi\)
\(390\) 0 0
\(391\) −3.17009 −0.160318
\(392\) 0 0
\(393\) 7.34244 0.370377
\(394\) 0 0
\(395\) −5.13624 −0.258432
\(396\) 0 0
\(397\) 20.6537 1.03658 0.518289 0.855205i \(-0.326569\pi\)
0.518289 + 0.855205i \(0.326569\pi\)
\(398\) 0 0
\(399\) −6.15676 −0.308223
\(400\) 0 0
\(401\) 24.3402 1.21549 0.607745 0.794132i \(-0.292074\pi\)
0.607745 + 0.794132i \(0.292074\pi\)
\(402\) 0 0
\(403\) −40.4801 −2.01646
\(404\) 0 0
\(405\) 1.69368 0.0841595
\(406\) 0 0
\(407\) 11.4186 0.565997
\(408\) 0 0
\(409\) 17.2885 0.854859 0.427430 0.904049i \(-0.359419\pi\)
0.427430 + 0.904049i \(0.359419\pi\)
\(410\) 0 0
\(411\) 9.07838 0.447803
\(412\) 0 0
\(413\) 8.40522 0.413594
\(414\) 0 0
\(415\) 17.1461 0.841668
\(416\) 0 0
\(417\) 3.42696 0.167819
\(418\) 0 0
\(419\) 3.05172 0.149086 0.0745430 0.997218i \(-0.476250\pi\)
0.0745430 + 0.997218i \(0.476250\pi\)
\(420\) 0 0
\(421\) 13.8843 0.676679 0.338339 0.941024i \(-0.390135\pi\)
0.338339 + 0.941024i \(0.390135\pi\)
\(422\) 0 0
\(423\) 9.93495 0.483054
\(424\) 0 0
\(425\) −11.5103 −0.558330
\(426\) 0 0
\(427\) −6.92881 −0.335309
\(428\) 0 0
\(429\) −18.8371 −0.909464
\(430\) 0 0
\(431\) −15.2039 −0.732348 −0.366174 0.930546i \(-0.619332\pi\)
−0.366174 + 0.930546i \(0.619332\pi\)
\(432\) 0 0
\(433\) 12.8566 0.617848 0.308924 0.951087i \(-0.400031\pi\)
0.308924 + 0.951087i \(0.400031\pi\)
\(434\) 0 0
\(435\) −0.863763 −0.0414143
\(436\) 0 0
\(437\) 5.26180 0.251706
\(438\) 0 0
\(439\) −14.5620 −0.695005 −0.347503 0.937679i \(-0.612970\pi\)
−0.347503 + 0.937679i \(0.612970\pi\)
\(440\) 0 0
\(441\) −1.63090 −0.0776618
\(442\) 0 0
\(443\) 30.2557 1.43749 0.718745 0.695274i \(-0.244717\pi\)
0.718745 + 0.695274i \(0.244717\pi\)
\(444\) 0 0
\(445\) 7.92389 0.375628
\(446\) 0 0
\(447\) 0.979481 0.0463279
\(448\) 0 0
\(449\) −4.68422 −0.221062 −0.110531 0.993873i \(-0.535255\pi\)
−0.110531 + 0.993873i \(0.535255\pi\)
\(450\) 0 0
\(451\) −9.94214 −0.468157
\(452\) 0 0
\(453\) −18.6225 −0.874961
\(454\) 0 0
\(455\) −5.07838 −0.238078
\(456\) 0 0
\(457\) 23.4596 1.09739 0.548697 0.836022i \(-0.315124\pi\)
0.548697 + 0.836022i \(0.315124\pi\)
\(458\) 0 0
\(459\) −17.1773 −0.801767
\(460\) 0 0
\(461\) 6.58145 0.306529 0.153264 0.988185i \(-0.451021\pi\)
0.153264 + 0.988185i \(0.451021\pi\)
\(462\) 0 0
\(463\) −20.0144 −0.930147 −0.465073 0.885272i \(-0.653972\pi\)
−0.465073 + 0.885272i \(0.653972\pi\)
\(464\) 0 0
\(465\) 12.7694 0.592167
\(466\) 0 0
\(467\) −21.4596 −0.993031 −0.496516 0.868028i \(-0.665387\pi\)
−0.496516 + 0.868028i \(0.665387\pi\)
\(468\) 0 0
\(469\) −9.86603 −0.455571
\(470\) 0 0
\(471\) −13.0700 −0.602232
\(472\) 0 0
\(473\) −31.5174 −1.44917
\(474\) 0 0
\(475\) 19.1050 0.876599
\(476\) 0 0
\(477\) −6.77924 −0.310400
\(478\) 0 0
\(479\) 14.3090 0.653794 0.326897 0.945060i \(-0.393997\pi\)
0.326897 + 0.945060i \(0.393997\pi\)
\(480\) 0 0
\(481\) −13.3607 −0.609195
\(482\) 0 0
\(483\) −1.17009 −0.0532408
\(484\) 0 0
\(485\) −10.0494 −0.456322
\(486\) 0 0
\(487\) 5.36069 0.242916 0.121458 0.992597i \(-0.461243\pi\)
0.121458 + 0.992597i \(0.461243\pi\)
\(488\) 0 0
\(489\) −17.1096 −0.773722
\(490\) 0 0
\(491\) −8.99386 −0.405887 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(492\) 0 0
\(493\) 2.00000 0.0900755
\(494\) 0 0
\(495\) −7.07838 −0.318149
\(496\) 0 0
\(497\) −10.8371 −0.486110
\(498\) 0 0
\(499\) −2.02666 −0.0907259 −0.0453629 0.998971i \(-0.514444\pi\)
−0.0453629 + 0.998971i \(0.514444\pi\)
\(500\) 0 0
\(501\) −7.02893 −0.314029
\(502\) 0 0
\(503\) 32.4124 1.44520 0.722599 0.691268i \(-0.242947\pi\)
0.722599 + 0.691268i \(0.242947\pi\)
\(504\) 0 0
\(505\) 5.75872 0.256260
\(506\) 0 0
\(507\) 6.82991 0.303327
\(508\) 0 0
\(509\) −10.4826 −0.464631 −0.232315 0.972640i \(-0.574630\pi\)
−0.232315 + 0.972640i \(0.574630\pi\)
\(510\) 0 0
\(511\) −13.0205 −0.575994
\(512\) 0 0
\(513\) 28.5113 1.25880
\(514\) 0 0
\(515\) 19.5174 0.860041
\(516\) 0 0
\(517\) 22.5958 0.993763
\(518\) 0 0
\(519\) 16.4969 0.724135
\(520\) 0 0
\(521\) −24.6030 −1.07788 −0.538939 0.842345i \(-0.681175\pi\)
−0.538939 + 0.842345i \(0.681175\pi\)
\(522\) 0 0
\(523\) −12.1978 −0.533372 −0.266686 0.963783i \(-0.585929\pi\)
−0.266686 + 0.963783i \(0.585929\pi\)
\(524\) 0 0
\(525\) −4.24846 −0.185418
\(526\) 0 0
\(527\) −29.5669 −1.28795
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −13.7081 −0.594879
\(532\) 0 0
\(533\) 11.6332 0.503888
\(534\) 0 0
\(535\) −17.9421 −0.775706
\(536\) 0 0
\(537\) 21.2085 0.915213
\(538\) 0 0
\(539\) −3.70928 −0.159770
\(540\) 0 0
\(541\) 17.5259 0.753495 0.376748 0.926316i \(-0.377042\pi\)
0.376748 + 0.926316i \(0.377042\pi\)
\(542\) 0 0
\(543\) 14.5464 0.624245
\(544\) 0 0
\(545\) 13.0784 0.560216
\(546\) 0 0
\(547\) −12.5958 −0.538559 −0.269279 0.963062i \(-0.586785\pi\)
−0.269279 + 0.963062i \(0.586785\pi\)
\(548\) 0 0
\(549\) 11.3002 0.482280
\(550\) 0 0
\(551\) −3.31965 −0.141422
\(552\) 0 0
\(553\) 4.38962 0.186666
\(554\) 0 0
\(555\) 4.21461 0.178900
\(556\) 0 0
\(557\) −26.5113 −1.12332 −0.561660 0.827368i \(-0.689837\pi\)
−0.561660 + 0.827368i \(0.689837\pi\)
\(558\) 0 0
\(559\) 36.8781 1.55978
\(560\) 0 0
\(561\) −13.7587 −0.580894
\(562\) 0 0
\(563\) 17.0472 0.718453 0.359227 0.933250i \(-0.383041\pi\)
0.359227 + 0.933250i \(0.383041\pi\)
\(564\) 0 0
\(565\) −15.8166 −0.665409
\(566\) 0 0
\(567\) −1.44748 −0.0607885
\(568\) 0 0
\(569\) −25.1194 −1.05306 −0.526530 0.850156i \(-0.676507\pi\)
−0.526530 + 0.850156i \(0.676507\pi\)
\(570\) 0 0
\(571\) 12.0144 0.502786 0.251393 0.967885i \(-0.419111\pi\)
0.251393 + 0.967885i \(0.419111\pi\)
\(572\) 0 0
\(573\) 5.69102 0.237746
\(574\) 0 0
\(575\) 3.63090 0.151419
\(576\) 0 0
\(577\) −10.1133 −0.421021 −0.210511 0.977592i \(-0.567513\pi\)
−0.210511 + 0.977592i \(0.567513\pi\)
\(578\) 0 0
\(579\) −20.1666 −0.838095
\(580\) 0 0
\(581\) −14.6537 −0.607937
\(582\) 0 0
\(583\) −15.4186 −0.638571
\(584\) 0 0
\(585\) 8.28231 0.342432
\(586\) 0 0
\(587\) 14.2485 0.588097 0.294049 0.955790i \(-0.404997\pi\)
0.294049 + 0.955790i \(0.404997\pi\)
\(588\) 0 0
\(589\) 49.0759 2.02214
\(590\) 0 0
\(591\) −14.6537 −0.602772
\(592\) 0 0
\(593\) −20.2557 −0.831800 −0.415900 0.909410i \(-0.636533\pi\)
−0.415900 + 0.909410i \(0.636533\pi\)
\(594\) 0 0
\(595\) −3.70928 −0.152065
\(596\) 0 0
\(597\) −1.36069 −0.0556894
\(598\) 0 0
\(599\) 19.2351 0.785926 0.392963 0.919554i \(-0.371450\pi\)
0.392963 + 0.919554i \(0.371450\pi\)
\(600\) 0 0
\(601\) −21.4329 −0.874267 −0.437134 0.899397i \(-0.644006\pi\)
−0.437134 + 0.899397i \(0.644006\pi\)
\(602\) 0 0
\(603\) 16.0905 0.655255
\(604\) 0 0
\(605\) −3.22795 −0.131235
\(606\) 0 0
\(607\) 37.7926 1.53395 0.766977 0.641675i \(-0.221760\pi\)
0.766977 + 0.641675i \(0.221760\pi\)
\(608\) 0 0
\(609\) 0.738205 0.0299136
\(610\) 0 0
\(611\) −26.4391 −1.06961
\(612\) 0 0
\(613\) 14.6947 0.593514 0.296757 0.954953i \(-0.404095\pi\)
0.296757 + 0.954953i \(0.404095\pi\)
\(614\) 0 0
\(615\) −3.66967 −0.147975
\(616\) 0 0
\(617\) 12.1256 0.488157 0.244078 0.969756i \(-0.421515\pi\)
0.244078 + 0.969756i \(0.421515\pi\)
\(618\) 0 0
\(619\) 12.0144 0.482899 0.241449 0.970413i \(-0.422377\pi\)
0.241449 + 0.970413i \(0.422377\pi\)
\(620\) 0 0
\(621\) 5.41855 0.217439
\(622\) 0 0
\(623\) −6.77205 −0.271317
\(624\) 0 0
\(625\) 6.33791 0.253516
\(626\) 0 0
\(627\) 22.8371 0.912026
\(628\) 0 0
\(629\) −9.75872 −0.389106
\(630\) 0 0
\(631\) −10.9300 −0.435118 −0.217559 0.976047i \(-0.569809\pi\)
−0.217559 + 0.976047i \(0.569809\pi\)
\(632\) 0 0
\(633\) −5.57531 −0.221599
\(634\) 0 0
\(635\) 3.41855 0.135661
\(636\) 0 0
\(637\) 4.34017 0.171964
\(638\) 0 0
\(639\) 17.6742 0.699181
\(640\) 0 0
\(641\) −33.1194 −1.30814 −0.654069 0.756435i \(-0.726939\pi\)
−0.654069 + 0.756435i \(0.726939\pi\)
\(642\) 0 0
\(643\) 17.5297 0.691305 0.345653 0.938363i \(-0.387658\pi\)
0.345653 + 0.938363i \(0.387658\pi\)
\(644\) 0 0
\(645\) −11.6332 −0.458055
\(646\) 0 0
\(647\) 6.88777 0.270786 0.135393 0.990792i \(-0.456770\pi\)
0.135393 + 0.990792i \(0.456770\pi\)
\(648\) 0 0
\(649\) −31.1773 −1.22382
\(650\) 0 0
\(651\) −10.9132 −0.427722
\(652\) 0 0
\(653\) −36.3545 −1.42266 −0.711332 0.702856i \(-0.751908\pi\)
−0.711332 + 0.702856i \(0.751908\pi\)
\(654\) 0 0
\(655\) −7.34244 −0.286893
\(656\) 0 0
\(657\) 21.2351 0.828461
\(658\) 0 0
\(659\) 2.63931 0.102813 0.0514064 0.998678i \(-0.483630\pi\)
0.0514064 + 0.998678i \(0.483630\pi\)
\(660\) 0 0
\(661\) 21.0010 0.816846 0.408423 0.912793i \(-0.366079\pi\)
0.408423 + 0.912793i \(0.366079\pi\)
\(662\) 0 0
\(663\) 16.0989 0.625229
\(664\) 0 0
\(665\) 6.15676 0.238749
\(666\) 0 0
\(667\) −0.630898 −0.0244285
\(668\) 0 0
\(669\) 25.0023 0.966644
\(670\) 0 0
\(671\) 25.7009 0.992171
\(672\) 0 0
\(673\) −51.2534 −1.97567 −0.987836 0.155497i \(-0.950302\pi\)
−0.987836 + 0.155497i \(0.950302\pi\)
\(674\) 0 0
\(675\) 19.6742 0.757260
\(676\) 0 0
\(677\) 41.4668 1.59370 0.796849 0.604179i \(-0.206499\pi\)
0.796849 + 0.604179i \(0.206499\pi\)
\(678\) 0 0
\(679\) 8.58864 0.329602
\(680\) 0 0
\(681\) 6.83710 0.261998
\(682\) 0 0
\(683\) 26.2557 1.00464 0.502322 0.864680i \(-0.332479\pi\)
0.502322 + 0.864680i \(0.332479\pi\)
\(684\) 0 0
\(685\) −9.07838 −0.346867
\(686\) 0 0
\(687\) 3.34244 0.127522
\(688\) 0 0
\(689\) 18.0410 0.687309
\(690\) 0 0
\(691\) 12.0338 0.457789 0.228895 0.973451i \(-0.426489\pi\)
0.228895 + 0.973451i \(0.426489\pi\)
\(692\) 0 0
\(693\) 6.04945 0.229800
\(694\) 0 0
\(695\) −3.42696 −0.129992
\(696\) 0 0
\(697\) 8.49693 0.321844
\(698\) 0 0
\(699\) −15.8264 −0.598610
\(700\) 0 0
\(701\) 34.6491 1.30868 0.654340 0.756200i \(-0.272946\pi\)
0.654340 + 0.756200i \(0.272946\pi\)
\(702\) 0 0
\(703\) 16.1978 0.610911
\(704\) 0 0
\(705\) 8.34017 0.314109
\(706\) 0 0
\(707\) −4.92162 −0.185097
\(708\) 0 0
\(709\) 7.65983 0.287671 0.143835 0.989602i \(-0.454056\pi\)
0.143835 + 0.989602i \(0.454056\pi\)
\(710\) 0 0
\(711\) −7.15902 −0.268484
\(712\) 0 0
\(713\) 9.32684 0.349293
\(714\) 0 0
\(715\) 18.8371 0.704468
\(716\) 0 0
\(717\) −5.57531 −0.208214
\(718\) 0 0
\(719\) −22.4196 −0.836110 −0.418055 0.908422i \(-0.637288\pi\)
−0.418055 + 0.908422i \(0.637288\pi\)
\(720\) 0 0
\(721\) −16.6803 −0.621209
\(722\) 0 0
\(723\) 28.6407 1.06516
\(724\) 0 0
\(725\) −2.29072 −0.0850754
\(726\) 0 0
\(727\) −34.8371 −1.29204 −0.646018 0.763322i \(-0.723567\pi\)
−0.646018 + 0.763322i \(0.723567\pi\)
\(728\) 0 0
\(729\) 21.3812 0.791897
\(730\) 0 0
\(731\) 26.9360 0.996264
\(732\) 0 0
\(733\) −38.6752 −1.42850 −0.714251 0.699889i \(-0.753233\pi\)
−0.714251 + 0.699889i \(0.753233\pi\)
\(734\) 0 0
\(735\) −1.36910 −0.0505001
\(736\) 0 0
\(737\) 36.5958 1.34802
\(738\) 0 0
\(739\) 51.3484 1.88888 0.944441 0.328682i \(-0.106604\pi\)
0.944441 + 0.328682i \(0.106604\pi\)
\(740\) 0 0
\(741\) −26.7214 −0.981635
\(742\) 0 0
\(743\) −8.00597 −0.293710 −0.146855 0.989158i \(-0.546915\pi\)
−0.146855 + 0.989158i \(0.546915\pi\)
\(744\) 0 0
\(745\) −0.979481 −0.0358854
\(746\) 0 0
\(747\) 23.8987 0.874406
\(748\) 0 0
\(749\) 15.3340 0.560293
\(750\) 0 0
\(751\) −23.3958 −0.853724 −0.426862 0.904317i \(-0.640381\pi\)
−0.426862 + 0.904317i \(0.640381\pi\)
\(752\) 0 0
\(753\) 30.7214 1.11955
\(754\) 0 0
\(755\) 18.6225 0.677742
\(756\) 0 0
\(757\) −29.1194 −1.05836 −0.529182 0.848509i \(-0.677501\pi\)
−0.529182 + 0.848509i \(0.677501\pi\)
\(758\) 0 0
\(759\) 4.34017 0.157538
\(760\) 0 0
\(761\) −10.1834 −0.369149 −0.184574 0.982819i \(-0.559091\pi\)
−0.184574 + 0.982819i \(0.559091\pi\)
\(762\) 0 0
\(763\) −11.1773 −0.404645
\(764\) 0 0
\(765\) 6.04945 0.218718
\(766\) 0 0
\(767\) 36.4801 1.31722
\(768\) 0 0
\(769\) 0.431882 0.0155741 0.00778703 0.999970i \(-0.497521\pi\)
0.00778703 + 0.999970i \(0.497521\pi\)
\(770\) 0 0
\(771\) 9.17727 0.330511
\(772\) 0 0
\(773\) −0.0650468 −0.00233957 −0.00116978 0.999999i \(-0.500372\pi\)
−0.00116978 + 0.999999i \(0.500372\pi\)
\(774\) 0 0
\(775\) 33.8648 1.21646
\(776\) 0 0
\(777\) −3.60197 −0.129220
\(778\) 0 0
\(779\) −14.1034 −0.505308
\(780\) 0 0
\(781\) 40.1978 1.43839
\(782\) 0 0
\(783\) −3.41855 −0.122169
\(784\) 0 0
\(785\) 13.0700 0.466487
\(786\) 0 0
\(787\) −31.5486 −1.12459 −0.562294 0.826937i \(-0.690081\pi\)
−0.562294 + 0.826937i \(0.690081\pi\)
\(788\) 0 0
\(789\) −12.7694 −0.454603
\(790\) 0 0
\(791\) 13.5174 0.480625
\(792\) 0 0
\(793\) −30.0722 −1.06790
\(794\) 0 0
\(795\) −5.69102 −0.201840
\(796\) 0 0
\(797\) 51.8336 1.83604 0.918020 0.396533i \(-0.129787\pi\)
0.918020 + 0.396533i \(0.129787\pi\)
\(798\) 0 0
\(799\) −19.3112 −0.683183
\(800\) 0 0
\(801\) 11.0445 0.390239
\(802\) 0 0
\(803\) 48.2967 1.70435
\(804\) 0 0
\(805\) 1.17009 0.0412401
\(806\) 0 0
\(807\) −4.18342 −0.147263
\(808\) 0 0
\(809\) 44.4391 1.56239 0.781197 0.624284i \(-0.214609\pi\)
0.781197 + 0.624284i \(0.214609\pi\)
\(810\) 0 0
\(811\) 23.6358 0.829966 0.414983 0.909829i \(-0.363788\pi\)
0.414983 + 0.909829i \(0.363788\pi\)
\(812\) 0 0
\(813\) 6.99773 0.245421
\(814\) 0 0
\(815\) 17.1096 0.599322
\(816\) 0 0
\(817\) −44.7091 −1.56417
\(818\) 0 0
\(819\) −7.07838 −0.247339
\(820\) 0 0
\(821\) −14.9399 −0.521405 −0.260703 0.965419i \(-0.583954\pi\)
−0.260703 + 0.965419i \(0.583954\pi\)
\(822\) 0 0
\(823\) −30.7670 −1.07247 −0.536234 0.844069i \(-0.680154\pi\)
−0.536234 + 0.844069i \(0.680154\pi\)
\(824\) 0 0
\(825\) 15.7587 0.548648
\(826\) 0 0
\(827\) 24.5113 0.852342 0.426171 0.904643i \(-0.359862\pi\)
0.426171 + 0.904643i \(0.359862\pi\)
\(828\) 0 0
\(829\) 43.8720 1.52374 0.761869 0.647731i \(-0.224282\pi\)
0.761869 + 0.647731i \(0.224282\pi\)
\(830\) 0 0
\(831\) −15.5753 −0.540301
\(832\) 0 0
\(833\) 3.17009 0.109837
\(834\) 0 0
\(835\) 7.02893 0.243246
\(836\) 0 0
\(837\) 50.5380 1.74685
\(838\) 0 0
\(839\) 5.39189 0.186149 0.0930743 0.995659i \(-0.470331\pi\)
0.0930743 + 0.995659i \(0.470331\pi\)
\(840\) 0 0
\(841\) −28.6020 −0.986275
\(842\) 0 0
\(843\) −2.49239 −0.0858426
\(844\) 0 0
\(845\) −6.82991 −0.234956
\(846\) 0 0
\(847\) 2.75872 0.0947909
\(848\) 0 0
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) 3.07838 0.105525
\(852\) 0 0
\(853\) −1.33403 −0.0456763 −0.0228382 0.999739i \(-0.507270\pi\)
−0.0228382 + 0.999739i \(0.507270\pi\)
\(854\) 0 0
\(855\) −10.0410 −0.343396
\(856\) 0 0
\(857\) 12.1034 0.413445 0.206723 0.978400i \(-0.433720\pi\)
0.206723 + 0.978400i \(0.433720\pi\)
\(858\) 0 0
\(859\) −40.5718 −1.38429 −0.692146 0.721757i \(-0.743335\pi\)
−0.692146 + 0.721757i \(0.743335\pi\)
\(860\) 0 0
\(861\) 3.13624 0.106883
\(862\) 0 0
\(863\) −34.0944 −1.16059 −0.580293 0.814408i \(-0.697062\pi\)
−0.580293 + 0.814408i \(0.697062\pi\)
\(864\) 0 0
\(865\) −16.4969 −0.560912
\(866\) 0 0
\(867\) −8.13275 −0.276203
\(868\) 0 0
\(869\) −16.2823 −0.552340
\(870\) 0 0
\(871\) −42.8203 −1.45091
\(872\) 0 0
\(873\) −14.0072 −0.474071
\(874\) 0 0
\(875\) 10.0989 0.341405
\(876\) 0 0
\(877\) −20.4163 −0.689409 −0.344704 0.938711i \(-0.612021\pi\)
−0.344704 + 0.938711i \(0.612021\pi\)
\(878\) 0 0
\(879\) −15.5259 −0.523674
\(880\) 0 0
\(881\) −35.4668 −1.19491 −0.597453 0.801904i \(-0.703821\pi\)
−0.597453 + 0.801904i \(0.703821\pi\)
\(882\) 0 0
\(883\) −7.91548 −0.266377 −0.133189 0.991091i \(-0.542522\pi\)
−0.133189 + 0.991091i \(0.542522\pi\)
\(884\) 0 0
\(885\) −11.5076 −0.386824
\(886\) 0 0
\(887\) 8.10608 0.272176 0.136088 0.990697i \(-0.456547\pi\)
0.136088 + 0.990697i \(0.456547\pi\)
\(888\) 0 0
\(889\) −2.92162 −0.0979881
\(890\) 0 0
\(891\) 5.36910 0.179872
\(892\) 0 0
\(893\) 32.0533 1.07262
\(894\) 0 0
\(895\) −21.2085 −0.708921
\(896\) 0 0
\(897\) −5.07838 −0.169562
\(898\) 0 0
\(899\) −5.88428 −0.196252
\(900\) 0 0
\(901\) 13.1773 0.438999
\(902\) 0 0
\(903\) 9.94214 0.330854
\(904\) 0 0
\(905\) −14.5464 −0.483538
\(906\) 0 0
\(907\) 18.8371 0.625476 0.312738 0.949839i \(-0.398754\pi\)
0.312738 + 0.949839i \(0.398754\pi\)
\(908\) 0 0
\(909\) 8.02666 0.266228
\(910\) 0 0
\(911\) −33.6514 −1.11492 −0.557461 0.830203i \(-0.688224\pi\)
−0.557461 + 0.830203i \(0.688224\pi\)
\(912\) 0 0
\(913\) 54.3545 1.79887
\(914\) 0 0
\(915\) 9.48625 0.313606
\(916\) 0 0
\(917\) 6.27513 0.207223
\(918\) 0 0
\(919\) −42.5464 −1.40348 −0.701738 0.712435i \(-0.747592\pi\)
−0.701738 + 0.712435i \(0.747592\pi\)
\(920\) 0 0
\(921\) 20.4885 0.675120
\(922\) 0 0
\(923\) −47.0349 −1.54817
\(924\) 0 0
\(925\) 11.1773 0.367507
\(926\) 0 0
\(927\) 27.2039 0.893495
\(928\) 0 0
\(929\) 36.3012 1.19100 0.595502 0.803354i \(-0.296953\pi\)
0.595502 + 0.803354i \(0.296953\pi\)
\(930\) 0 0
\(931\) −5.26180 −0.172448
\(932\) 0 0
\(933\) −2.37978 −0.0779105
\(934\) 0 0
\(935\) 13.7587 0.449958
\(936\) 0 0
\(937\) 6.50412 0.212480 0.106240 0.994341i \(-0.466119\pi\)
0.106240 + 0.994341i \(0.466119\pi\)
\(938\) 0 0
\(939\) 14.4840 0.472667
\(940\) 0 0
\(941\) −2.35965 −0.0769223 −0.0384611 0.999260i \(-0.512246\pi\)
−0.0384611 + 0.999260i \(0.512246\pi\)
\(942\) 0 0
\(943\) −2.68035 −0.0872841
\(944\) 0 0
\(945\) 6.34017 0.206246
\(946\) 0 0
\(947\) −1.17727 −0.0382563 −0.0191281 0.999817i \(-0.506089\pi\)
−0.0191281 + 0.999817i \(0.506089\pi\)
\(948\) 0 0
\(949\) −56.5113 −1.83443
\(950\) 0 0
\(951\) −23.5753 −0.764482
\(952\) 0 0
\(953\) −31.8264 −1.03096 −0.515479 0.856902i \(-0.672386\pi\)
−0.515479 + 0.856902i \(0.672386\pi\)
\(954\) 0 0
\(955\) −5.69102 −0.184157
\(956\) 0 0
\(957\) −2.73820 −0.0885136
\(958\) 0 0
\(959\) 7.75872 0.250542
\(960\) 0 0
\(961\) 55.9900 1.80613
\(962\) 0 0
\(963\) −25.0082 −0.805879
\(964\) 0 0
\(965\) 20.1666 0.649186
\(966\) 0 0
\(967\) −42.6225 −1.37065 −0.685323 0.728239i \(-0.740339\pi\)
−0.685323 + 0.728239i \(0.740339\pi\)
\(968\) 0 0
\(969\) −19.5174 −0.626991
\(970\) 0 0
\(971\) −55.7998 −1.79070 −0.895350 0.445364i \(-0.853074\pi\)
−0.895350 + 0.445364i \(0.853074\pi\)
\(972\) 0 0
\(973\) 2.92881 0.0938933
\(974\) 0 0
\(975\) −18.4391 −0.590523
\(976\) 0 0
\(977\) 52.2245 1.67081 0.835404 0.549636i \(-0.185234\pi\)
0.835404 + 0.549636i \(0.185234\pi\)
\(978\) 0 0
\(979\) 25.1194 0.802820
\(980\) 0 0
\(981\) 18.2290 0.582007
\(982\) 0 0
\(983\) 16.7649 0.534716 0.267358 0.963597i \(-0.413849\pi\)
0.267358 + 0.963597i \(0.413849\pi\)
\(984\) 0 0
\(985\) 14.6537 0.466905
\(986\) 0 0
\(987\) −7.12783 −0.226881
\(988\) 0 0
\(989\) −8.49693 −0.270187
\(990\) 0 0
\(991\) 39.0349 1.23998 0.619992 0.784608i \(-0.287136\pi\)
0.619992 + 0.784608i \(0.287136\pi\)
\(992\) 0 0
\(993\) 7.84778 0.249042
\(994\) 0 0
\(995\) 1.36069 0.0431368
\(996\) 0 0
\(997\) −11.2618 −0.356665 −0.178332 0.983970i \(-0.557070\pi\)
−0.178332 + 0.983970i \(0.557070\pi\)
\(998\) 0 0
\(999\) 16.6803 0.527743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2576.2.a.v.1.3 3
4.3 odd 2 161.2.a.c.1.1 3
12.11 even 2 1449.2.a.m.1.3 3
20.19 odd 2 4025.2.a.j.1.3 3
28.27 even 2 1127.2.a.f.1.1 3
92.91 even 2 3703.2.a.c.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.a.c.1.1 3 4.3 odd 2
1127.2.a.f.1.1 3 28.27 even 2
1449.2.a.m.1.3 3 12.11 even 2
2576.2.a.v.1.3 3 1.1 even 1 trivial
3703.2.a.c.1.1 3 92.91 even 2
4025.2.a.j.1.3 3 20.19 odd 2