Properties

Label 2576.2.a.bd
Level $2576$
Weight $2$
Character orbit 2576.a
Self dual yes
Analytic conductor $20.569$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2576,2,Mod(1,2576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2576.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2576 = 2^{4} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2576.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-4,0,-5,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.5694635607\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2147108.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 9x^{3} + 17x^{2} + 16x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + ( - \beta_{4} - 1) q^{5} - q^{7} + ( - \beta_1 + 2) q^{9} + (\beta_{4} + \beta_{3} + \beta_{2} + 1) q^{11} + (\beta_{4} + \beta_{3} - 1) q^{13} + ( - \beta_{4} + \beta_{3} - 2 \beta_{2} + \cdots - 2) q^{15}+ \cdots + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{5} - 5 q^{7} + 11 q^{9} + 4 q^{11} - 6 q^{13} - 10 q^{15} - 12 q^{17} - 6 q^{19} + 5 q^{23} + 19 q^{25} - 4 q^{29} - 30 q^{31} - 22 q^{33} + 4 q^{35} + 4 q^{37} - 16 q^{39} + 6 q^{41} + 12 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 9x^{3} + 17x^{2} + 16x - 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 8\nu^{2} + 5\nu + 11 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + \nu^{3} - 10\nu^{2} - 5\nu + 19 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{3} - 2\beta_{2} + 3\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{4} + 2\beta_{3} + 9\beta_{2} + 9\beta _1 + 51 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.23828
−2.54577
2.69017
2.11948
−1.50216
0 −2.68857 0 −1.86253 0 −1.00000 0 4.22838 0
1.2 0 −2.46268 0 2.78847 0 −1.00000 0 3.06481 0
1.3 0 0.269842 0 −3.51109 0 −1.00000 0 −2.92719 0
1.4 0 1.84074 0 2.40920 0 −1.00000 0 0.388311 0
1.5 0 3.04067 0 −3.82405 0 −1.00000 0 6.24568 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2576.2.a.bd 5
4.b odd 2 1 161.2.a.d 5
12.b even 2 1 1449.2.a.r 5
20.d odd 2 1 4025.2.a.p 5
28.d even 2 1 1127.2.a.h 5
92.b even 2 1 3703.2.a.j 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.a.d 5 4.b odd 2 1
1127.2.a.h 5 28.d even 2 1
1449.2.a.r 5 12.b even 2 1
2576.2.a.bd 5 1.a even 1 1 trivial
3703.2.a.j 5 92.b even 2 1
4025.2.a.p 5 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2576))\):

\( T_{3}^{5} - 13T_{3}^{3} + 38T_{3} - 10 \) Copy content Toggle raw display
\( T_{5}^{5} + 4T_{5}^{4} - 14T_{5}^{3} - 54T_{5}^{2} + 52T_{5} + 168 \) Copy content Toggle raw display
\( T_{11}^{5} - 4T_{11}^{4} - 28T_{11}^{3} + 148T_{11}^{2} - 160T_{11} + 48 \) Copy content Toggle raw display
\( T_{13}^{5} + 6T_{13}^{4} - 9T_{13}^{3} - 46T_{13}^{2} + 12T_{13} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 13 T^{3} + \cdots - 10 \) Copy content Toggle raw display
$5$ \( T^{5} + 4 T^{4} + \cdots + 168 \) Copy content Toggle raw display
$7$ \( (T + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots + 48 \) Copy content Toggle raw display
$13$ \( T^{5} + 6 T^{4} + \cdots + 56 \) Copy content Toggle raw display
$17$ \( T^{5} + 12 T^{4} + \cdots - 1536 \) Copy content Toggle raw display
$19$ \( T^{5} + 6 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$23$ \( (T - 1)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 4 T^{4} + \cdots - 1452 \) Copy content Toggle raw display
$31$ \( T^{5} + 30 T^{4} + \cdots + 5206 \) Copy content Toggle raw display
$37$ \( T^{5} - 4 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$41$ \( T^{5} - 6 T^{4} + \cdots - 456 \) Copy content Toggle raw display
$43$ \( T^{5} - 12 T^{4} + \cdots - 256 \) Copy content Toggle raw display
$47$ \( T^{5} + 10 T^{4} + \cdots - 11142 \) Copy content Toggle raw display
$53$ \( T^{5} - 16 T^{4} + \cdots - 480 \) Copy content Toggle raw display
$59$ \( T^{5} + 22 T^{4} + \cdots - 1440 \) Copy content Toggle raw display
$61$ \( T^{5} + 18 T^{4} + \cdots + 56 \) Copy content Toggle raw display
$67$ \( T^{5} - 2 T^{4} + \cdots - 61936 \) Copy content Toggle raw display
$71$ \( T^{5} + 4 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$73$ \( T^{5} + 2 T^{4} + \cdots - 27656 \) Copy content Toggle raw display
$79$ \( T^{5} + 30 T^{4} + \cdots - 1936 \) Copy content Toggle raw display
$83$ \( T^{5} + 8 T^{4} + \cdots + 5376 \) Copy content Toggle raw display
$89$ \( T^{5} + 20 T^{4} + \cdots - 4704 \) Copy content Toggle raw display
$97$ \( T^{5} + 12 T^{4} + \cdots + 4120 \) Copy content Toggle raw display
show more
show less