Defining parameters
Level: | \( N \) | \(=\) | \( 2576 = 2^{4} \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2576.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 31 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2576))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 396 | 66 | 330 |
Cusp forms | 373 | 66 | 307 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(23\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(10\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(6\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(12\) |
Plus space | \(+\) | \(25\) | ||
Minus space | \(-\) | \(41\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2576))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2576))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2576)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(368))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(644))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1288))\)\(^{\oplus 2}\)