Properties

Label 256.9.c.f.255.1
Level $256$
Weight $9$
Character 256.255
Analytic conductor $104.289$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,9,Mod(255,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.255");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 256.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.288924176\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 255.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 256.255
Dual form 256.9.c.f.255.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-34.0000i q^{3} +5405.00 q^{9} +O(q^{10})\) \(q-34.0000i q^{3} +5405.00 q^{9} -27166.0i q^{11} +162434. q^{17} +72286.0i q^{19} -390625. q^{25} -406844. i q^{27} -923644. q^{33} +4.09901e6 q^{41} +5.42640e6i q^{43} +5.76480e6 q^{49} -5.52276e6i q^{51} +2.45772e6 q^{57} -2.41781e7i q^{59} +1.39443e7i q^{67} -3.35676e7 q^{73} +1.32812e7i q^{75} +2.16295e7 q^{81} -3.02100e7i q^{83} +9.55198e7 q^{89} -7.74182e7 q^{97} -1.46832e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10810 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 10810 q^{9} + 324868 q^{17} - 781250 q^{25} - 1847288 q^{33} + 8198012 q^{41} + 11529602 q^{49} + 4915448 q^{57} - 67135108 q^{73} + 43259018 q^{81} + 191039612 q^{89} - 154836476 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 34.0000i − 0.419753i −0.977728 0.209877i \(-0.932694\pi\)
0.977728 0.209877i \(-0.0673062\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 5405.00 0.823807
\(10\) 0 0
\(11\) − 27166.0i − 1.85547i −0.373234 0.927737i \(-0.621751\pi\)
0.373234 0.927737i \(-0.378249\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 162434. 1.94483 0.972414 0.233261i \(-0.0749397\pi\)
0.972414 + 0.233261i \(0.0749397\pi\)
\(18\) 0 0
\(19\) 72286.0i 0.554677i 0.960772 + 0.277338i \(0.0894523\pi\)
−0.960772 + 0.277338i \(0.910548\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −390625. −1.00000
\(26\) 0 0
\(27\) − 406844.i − 0.765549i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −923644. −0.778841
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.09901e6 1.45058 0.725292 0.688441i \(-0.241705\pi\)
0.725292 + 0.688441i \(0.241705\pi\)
\(42\) 0 0
\(43\) 5.42640e6i 1.58722i 0.608424 + 0.793612i \(0.291802\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 5.76480e6 1.00000
\(50\) 0 0
\(51\) − 5.52276e6i − 0.816348i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.45772e6 0.232827
\(58\) 0 0
\(59\) − 2.41781e7i − 1.99533i −0.0683312 0.997663i \(-0.521767\pi\)
0.0683312 0.997663i \(-0.478233\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.39443e7i 0.691986i 0.938237 + 0.345993i \(0.112458\pi\)
−0.938237 + 0.345993i \(0.887542\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −3.35676e7 −1.18203 −0.591015 0.806661i \(-0.701272\pi\)
−0.591015 + 0.806661i \(0.701272\pi\)
\(74\) 0 0
\(75\) 1.32812e7i 0.419753i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 2.16295e7 0.502466
\(82\) 0 0
\(83\) − 3.02100e7i − 0.636558i −0.947997 0.318279i \(-0.896895\pi\)
0.947997 0.318279i \(-0.103105\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.55198e7 1.52242 0.761208 0.648508i \(-0.224607\pi\)
0.761208 + 0.648508i \(0.224607\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.74182e7 −0.874493 −0.437247 0.899342i \(-0.644046\pi\)
−0.437247 + 0.899342i \(0.644046\pi\)
\(98\) 0 0
\(99\) − 1.46832e8i − 1.52855i
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.84965e8i − 1.41109i −0.708664 0.705546i \(-0.750702\pi\)
0.708664 0.705546i \(-0.249298\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.22024e7 −0.442831 −0.221415 0.975180i \(-0.571068\pi\)
−0.221415 + 0.975180i \(0.571068\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.23633e8 −2.44279
\(122\) 0 0
\(123\) − 1.39366e8i − 0.608887i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 1.84498e8 0.666242
\(130\) 0 0
\(131\) − 3.39909e8i − 1.15419i −0.816677 0.577095i \(-0.804186\pi\)
0.816677 0.577095i \(-0.195814\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.39511e8 0.963767 0.481884 0.876235i \(-0.339953\pi\)
0.481884 + 0.876235i \(0.339953\pi\)
\(138\) 0 0
\(139\) − 7.32208e8i − 1.96144i −0.195418 0.980720i \(-0.562606\pi\)
0.195418 0.980720i \(-0.437394\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.96003e8i − 0.419753i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 8.77956e8 1.60216
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 1.14307e9i − 1.61929i −0.586921 0.809644i \(-0.699660\pi\)
0.586921 0.809644i \(-0.300340\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −8.15731e8 −1.00000
\(170\) 0 0
\(171\) 3.90706e8i 0.456947i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.22055e8 −0.837544
\(178\) 0 0
\(179\) − 1.90643e9i − 1.85699i −0.371349 0.928493i \(-0.621105\pi\)
0.371349 0.928493i \(-0.378895\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 4.41268e9i − 3.60858i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 1.43626e9 1.03515 0.517574 0.855638i \(-0.326835\pi\)
0.517574 + 0.855638i \(0.326835\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 4.74106e8 0.290463
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.96372e9 1.02919
\(210\) 0 0
\(211\) 2.52282e9i 1.27279i 0.771363 + 0.636395i \(0.219575\pi\)
−0.771363 + 0.636395i \(0.780425\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.14130e9i 0.496160i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −2.11133e9 −0.823807
\(226\) 0 0
\(227\) − 3.87828e9i − 1.46062i −0.683118 0.730308i \(-0.739377\pi\)
0.683118 0.730308i \(-0.260623\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.69938e8 −0.159447 −0.0797236 0.996817i \(-0.525404\pi\)
−0.0797236 + 0.996817i \(0.525404\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −5.80472e8 −0.172073 −0.0860366 0.996292i \(-0.527420\pi\)
−0.0860366 + 0.996292i \(0.527420\pi\)
\(242\) 0 0
\(243\) − 3.40471e9i − 0.976460i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1.02714e9 −0.267197
\(250\) 0 0
\(251\) 3.70800e8i 0.0934210i 0.998908 + 0.0467105i \(0.0148738\pi\)
−0.998908 + 0.0467105i \(0.985126\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.43940e9 −1.93455 −0.967273 0.253738i \(-0.918340\pi\)
−0.967273 + 0.253738i \(0.918340\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3.24767e9i − 0.639039i
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.06117e10i 1.85547i
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.21245e9 0.354852 0.177426 0.984134i \(-0.443223\pi\)
0.177426 + 0.984134i \(0.443223\pi\)
\(282\) 0 0
\(283\) 1.07196e10i 1.67122i 0.549321 + 0.835611i \(0.314886\pi\)
−0.549321 + 0.835611i \(0.685114\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.94090e10 2.78236
\(290\) 0 0
\(291\) 2.63222e9i 0.367071i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.10523e10 −1.42046
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.68482e9i 0.752551i 0.926508 + 0.376276i \(0.122795\pi\)
−0.926508 + 0.376276i \(0.877205\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 1.26772e10 1.32083 0.660415 0.750901i \(-0.270380\pi\)
0.660415 + 0.750901i \(0.270380\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −6.28882e9 −0.592310
\(322\) 0 0
\(323\) 1.17417e10i 1.07875i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.39214e10i 1.99285i 0.0844976 + 0.996424i \(0.473071\pi\)
−0.0844976 + 0.996424i \(0.526929\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.57940e10 −1.99986 −0.999930 0.0118516i \(-0.996227\pi\)
−0.999930 + 0.0118516i \(0.996227\pi\)
\(338\) 0 0
\(339\) 2.45488e9i 0.185880i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.92343e9i 0.546507i 0.961942 + 0.273253i \(0.0880997\pi\)
−0.961942 + 0.273253i \(0.911900\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.37121e10 0.883093 0.441546 0.897238i \(-0.354430\pi\)
0.441546 + 0.897238i \(0.354430\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.17583e10 0.692334
\(362\) 0 0
\(363\) 1.78035e10i 1.02537i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 2.21551e10 1.19500
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 7.66145e9i − 0.371325i −0.982614 0.185663i \(-0.940557\pi\)
0.982614 0.185663i \(-0.0594431\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.93297e10i 1.30757i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.15569e10 −0.484474
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.85927e10 0.719061 0.359530 0.933133i \(-0.382937\pi\)
0.359530 + 0.933133i \(0.382937\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 6.23419e9 0.222785 0.111393 0.993776i \(-0.464469\pi\)
0.111393 + 0.993776i \(0.464469\pi\)
\(410\) 0 0
\(411\) − 1.15434e10i − 0.404544i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2.48951e10 −0.823321
\(418\) 0 0
\(419\) 5.40872e10i 1.75484i 0.479720 + 0.877422i \(0.340738\pi\)
−0.479720 + 0.877422i \(0.659262\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.34508e10 −1.94483
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −6.86319e10 −1.95243 −0.976213 0.216813i \(-0.930434\pi\)
−0.976213 + 0.216813i \(0.930434\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 3.11587e10 0.823807
\(442\) 0 0
\(443\) 6.61486e10i 1.71754i 0.512364 + 0.858768i \(0.328770\pi\)
−0.512364 + 0.858768i \(0.671230\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.89524e10 0.958405 0.479202 0.877704i \(-0.340926\pi\)
0.479202 + 0.877704i \(0.340926\pi\)
\(450\) 0 0
\(451\) − 1.11354e11i − 2.69152i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.31242e10 −0.988681 −0.494340 0.869268i \(-0.664590\pi\)
−0.494340 + 0.869268i \(0.664590\pi\)
\(458\) 0 0
\(459\) − 6.60853e10i − 1.48886i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 9.41185e10i − 1.97883i −0.145128 0.989413i \(-0.546359\pi\)
0.145128 0.989413i \(-0.453641\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.47414e11 2.94505
\(474\) 0 0
\(475\) − 2.82367e10i − 0.554677i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −3.88645e10 −0.679701
\(490\) 0 0
\(491\) − 9.95056e10i − 1.71207i −0.516918 0.856035i \(-0.672921\pi\)
0.516918 0.856035i \(-0.327079\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.02919e11i 1.65995i 0.557801 + 0.829975i \(0.311645\pi\)
−0.557801 + 0.829975i \(0.688355\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.77348e10i 0.419753i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.94091e10 0.424632
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.27450e10 −0.987308 −0.493654 0.869658i \(-0.664339\pi\)
−0.493654 + 0.869658i \(0.664339\pi\)
\(522\) 0 0
\(523\) 1.41570e9i 0.0189219i 0.999955 + 0.00946097i \(0.00301157\pi\)
−0.999955 + 0.00946097i \(0.996988\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.83110e10 1.00000
\(530\) 0 0
\(531\) − 1.30683e11i − 1.64376i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.48186e10 −0.779476
\(538\) 0 0
\(539\) − 1.56607e11i − 1.85547i
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.99228e10i − 0.222537i −0.993790 0.111268i \(-0.964509\pi\)
0.993790 0.111268i \(-0.0354913\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1.50031e11 −1.51471
\(562\) 0 0
\(563\) − 1.38789e11i − 1.38141i −0.723136 0.690705i \(-0.757300\pi\)
0.723136 0.690705i \(-0.242700\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.44287e11 1.37651 0.688255 0.725468i \(-0.258377\pi\)
0.688255 + 0.725468i \(0.258377\pi\)
\(570\) 0 0
\(571\) − 1.64593e11i − 1.54834i −0.632978 0.774170i \(-0.718168\pi\)
0.632978 0.774170i \(-0.281832\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.21678e11 1.99995 0.999976 0.00693236i \(-0.00220666\pi\)
0.999976 + 0.00693236i \(0.00220666\pi\)
\(578\) 0 0
\(579\) − 4.88327e10i − 0.434507i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.29666e11i 1.09213i 0.837742 + 0.546066i \(0.183875\pi\)
−0.837742 + 0.546066i \(0.816125\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.45734e11 −1.98722 −0.993612 0.112847i \(-0.964003\pi\)
−0.993612 + 0.112847i \(0.964003\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 2.48165e11 1.90214 0.951069 0.308978i \(-0.0999870\pi\)
0.951069 + 0.308978i \(0.0999870\pi\)
\(602\) 0 0
\(603\) 7.53689e10i 0.570063i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.32420e11 −0.913722 −0.456861 0.889538i \(-0.651026\pi\)
−0.456861 + 0.889538i \(0.651026\pi\)
\(618\) 0 0
\(619\) − 9.06943e10i − 0.617756i −0.951102 0.308878i \(-0.900046\pi\)
0.951102 0.308878i \(-0.0999536\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.52588e11 1.00000
\(626\) 0 0
\(627\) − 6.67665e10i − 0.432005i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 8.57759e10 0.534258
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.79076e9 0.0579942 0.0289971 0.999579i \(-0.490769\pi\)
0.0289971 + 0.999579i \(0.490769\pi\)
\(642\) 0 0
\(643\) − 7.65969e10i − 0.448092i −0.974579 0.224046i \(-0.928073\pi\)
0.974579 0.224046i \(-0.0719266\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −6.56822e11 −3.70228
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.81433e11 −0.973764
\(658\) 0 0
\(659\) 3.62926e11i 1.92432i 0.272493 + 0.962158i \(0.412152\pi\)
−0.272493 + 0.962158i \(0.587848\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 7.87721e9 0.0383983 0.0191992 0.999816i \(-0.493888\pi\)
0.0191992 + 0.999816i \(0.493888\pi\)
\(674\) 0 0
\(675\) 1.58923e11i 0.765549i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.31862e11 −0.613098
\(682\) 0 0
\(683\) 1.64741e11i 0.757040i 0.925593 + 0.378520i \(0.123567\pi\)
−0.925593 + 0.378520i \(0.876433\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.82749e11i 1.24019i 0.784526 + 0.620095i \(0.212906\pi\)
−0.784526 + 0.620095i \(0.787094\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.65818e11 2.82114
\(698\) 0 0
\(699\) 1.59779e10i 0.0669285i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.97361e10i 0.0722283i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 2.61512e10 0.0925936
\(730\) 0 0
\(731\) 8.81432e11i 3.08688i
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.78810e11 1.28396
\(738\) 0 0
\(739\) − 3.80751e11i − 1.27662i −0.769778 0.638312i \(-0.779633\pi\)
0.769778 0.638312i \(-0.220367\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.63285e11i − 0.524401i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 1.26072e10 0.0392138
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.45467e10 0.162641 0.0813204 0.996688i \(-0.474086\pi\)
0.0813204 + 0.996688i \(0.474086\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.94260e11 −1.98526 −0.992628 0.121201i \(-0.961325\pi\)
−0.992628 + 0.121201i \(0.961325\pi\)
\(770\) 0 0
\(771\) 2.86940e11i 0.812032i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.96301e11i 0.804605i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.21875e11i 1.62108i 0.585684 + 0.810540i \(0.300826\pi\)
−0.585684 + 0.810540i \(0.699174\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 5.16285e11 1.25418
\(802\) 0 0
\(803\) 9.11896e11i 2.19323i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.68377e11 −1.32691 −0.663456 0.748215i \(-0.730911\pi\)
−0.663456 + 0.748215i \(0.730911\pi\)
\(810\) 0 0
\(811\) 7.82841e11i 1.80963i 0.425804 + 0.904815i \(0.359991\pi\)
−0.425804 + 0.904815i \(0.640009\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.92253e11 −0.880396
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 3.60798e11 0.778841
\(826\) 0 0
\(827\) − 8.84989e11i − 1.89198i −0.324200 0.945988i \(-0.605095\pi\)
0.324200 0.945988i \(-0.394905\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.36400e11 1.94483
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −5.00246e11 −1.00000
\(842\) 0 0
\(843\) − 7.52232e10i − 0.148950i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.64468e11 0.701501
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.07825e12 1.99892 0.999462 0.0328011i \(-0.0104428\pi\)
0.999462 + 0.0328011i \(0.0104428\pi\)
\(858\) 0 0
\(859\) 4.32719e11i 0.794755i 0.917655 + 0.397377i \(0.130080\pi\)
−0.917655 + 0.397377i \(0.869920\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 6.59908e11i − 1.16790i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −4.18446e11 −0.720414
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.39089e11 −1.55885 −0.779423 0.626498i \(-0.784488\pi\)
−0.779423 + 0.626498i \(0.784488\pi\)
\(882\) 0 0
\(883\) − 1.17202e12i − 1.92793i −0.266030 0.963965i \(-0.585712\pi\)
0.266030 0.963965i \(-0.414288\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 5.87587e11i − 0.932313i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3.17048e11i 0.468486i 0.972178 + 0.234243i \(0.0752611\pi\)
−0.972178 + 0.234243i \(0.924739\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −8.20684e11 −1.18112
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 2.27284e11 0.315886
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.12157e12 −1.50579 −0.752895 0.658140i \(-0.771343\pi\)
−0.752895 + 0.658140i \(0.771343\pi\)
\(930\) 0 0
\(931\) 4.16714e11i 0.554677i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.03224e9 0.00393373 0.00196687 0.999998i \(-0.499374\pi\)
0.00196687 + 0.999998i \(0.499374\pi\)
\(938\) 0 0
\(939\) − 4.31026e11i − 0.554422i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.59570e11i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.57684e12 −1.91169 −0.955843 0.293879i \(-0.905054\pi\)
−0.955843 + 0.293879i \(0.905054\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8.52891e11 1.00000
\(962\) 0 0
\(963\) − 9.99738e11i − 1.16247i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 3.99218e11 0.452809
\(970\) 0 0
\(971\) − 8.99918e11i − 1.01234i −0.862434 0.506170i \(-0.831061\pi\)
0.862434 0.506170i \(-0.168939\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.30947e12 1.43720 0.718598 0.695425i \(-0.244784\pi\)
0.718598 + 0.695425i \(0.244784\pi\)
\(978\) 0 0
\(979\) − 2.59489e12i − 2.82480i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 8.13327e11 0.836504
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.9.c.f.255.1 2
4.3 odd 2 inner 256.9.c.f.255.2 2
8.3 odd 2 CM 256.9.c.f.255.1 2
8.5 even 2 inner 256.9.c.f.255.2 2
16.3 odd 4 32.9.d.a.15.1 1
16.5 even 4 32.9.d.a.15.1 1
16.11 odd 4 8.9.d.a.3.1 1
16.13 even 4 8.9.d.a.3.1 1
48.5 odd 4 288.9.b.a.271.1 1
48.11 even 4 72.9.b.a.19.1 1
48.29 odd 4 72.9.b.a.19.1 1
48.35 even 4 288.9.b.a.271.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.9.d.a.3.1 1 16.11 odd 4
8.9.d.a.3.1 1 16.13 even 4
32.9.d.a.15.1 1 16.3 odd 4
32.9.d.a.15.1 1 16.5 even 4
72.9.b.a.19.1 1 48.11 even 4
72.9.b.a.19.1 1 48.29 odd 4
256.9.c.f.255.1 2 1.1 even 1 trivial
256.9.c.f.255.1 2 8.3 odd 2 CM
256.9.c.f.255.2 2 4.3 odd 2 inner
256.9.c.f.255.2 2 8.5 even 2 inner
288.9.b.a.271.1 1 48.5 odd 4
288.9.b.a.271.1 1 48.35 even 4