Properties

Label 256.8.b.l
Level $256$
Weight $8$
Character orbit 256.b
Analytic conductor $79.971$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,8,Mod(129,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.129"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.50765497344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 101x^{4} + 2512x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{3} + (\beta_{4} - \beta_1) q^{5} + (\beta_{5} - 2 \beta_{3} + 3) q^{7} + ( - 3 \beta_{5} + 7 \beta_{3} + 21) q^{9} + ( - 20 \beta_{4} + 32 \beta_{2} - 21 \beta_1) q^{11} + (27 \beta_{4} - 147 \beta_{2} + 85 \beta_1) q^{13}+ \cdots + ( - 25152 \beta_{4} + \cdots + 8417 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{7} + 106 q^{9} - 8232 q^{15} + 1076 q^{17} + 86632 q^{23} + 81206 q^{25} - 313856 q^{31} - 367000 q^{33} + 1243368 q^{39} + 1819396 q^{41} - 1705904 q^{47} - 3273066 q^{49} + 7411352 q^{55}+ \cdots - 10501388 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 101x^{4} + 2512x^{2} + 36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} - 95\nu^{3} - 1854\nu ) / 44 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 95\nu^{3} - 2206\nu ) / 33 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{4} - 204\nu^{2} + 31 ) / 11 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 73\nu^{5} + 7639\nu^{3} + 197118\nu ) / 66 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -20\nu^{4} - 1724\nu^{2} - 23517 ) / 33 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -3\beta_{2} + 4\beta_1 ) / 32 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{5} + 5\beta_{3} - 2152 ) / 64 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 12\beta_{4} + 1053\beta_{2} - 820\beta_1 ) / 128 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 153\beta_{5} - 431\beta_{3} + 110248 ) / 64 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -1140\beta_{4} - 77787\beta_{2} + 42604\beta_1 ) / 128 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
7.53231i
6.65206i
0.119748i
0.119748i
6.65206i
7.53231i
0 62.2585i 0 203.009i 0 534.535 0 −1689.12 0
129.2 0 51.2165i 0 145.477i 0 192.521 0 −436.129 0
129.3 0 2.95798i 0 362.486i 0 −715.055 0 2178.25 0
129.4 0 2.95798i 0 362.486i 0 −715.055 0 2178.25 0
129.5 0 51.2165i 0 145.477i 0 192.521 0 −436.129 0
129.6 0 62.2585i 0 203.009i 0 534.535 0 −1689.12 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 129.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.b.l 6
4.b odd 2 1 256.8.b.k 6
8.b even 2 1 inner 256.8.b.l 6
8.d odd 2 1 256.8.b.k 6
16.e even 4 1 128.8.a.a 3
16.e even 4 1 128.8.a.d yes 3
16.f odd 4 1 128.8.a.b yes 3
16.f odd 4 1 128.8.a.c yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.8.a.a 3 16.e even 4 1
128.8.a.b yes 3 16.f odd 4 1
128.8.a.c yes 3 16.f odd 4 1
128.8.a.d yes 3 16.e even 4 1
256.8.b.k 6 4.b odd 2 1
256.8.b.k 6 8.d odd 2 1
256.8.b.l 6 1.a even 1 1 trivial
256.8.b.l 6 8.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(256, [\chi])\):

\( T_{3}^{6} + 6508T_{3}^{4} + 10224432T_{3}^{2} + 88962624 \) Copy content Toggle raw display
\( T_{7}^{3} - 12T_{7}^{2} - 416976T_{7} + 73585600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 6508 T^{4} + \cdots + 88962624 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 114603876302400 \) Copy content Toggle raw display
$7$ \( (T^{3} - 12 T^{2} + \cdots + 73585600)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 34\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 29\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( (T^{3} + \cdots - 5603612104824)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 32\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( (T^{3} + \cdots - 36954823141312)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 40\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( (T^{3} + \cdots + 17\!\cdots\!52)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 38\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots + 31\!\cdots\!36)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( (T^{3} + \cdots - 41\!\cdots\!92)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 45\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 44\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 17\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 35\!\cdots\!40)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + \cdots + 48\!\cdots\!92)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 13\!\cdots\!32)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 98\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots + 95\!\cdots\!24)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 83\!\cdots\!64)^{2} \) Copy content Toggle raw display
show more
show less