Properties

Label 256.8.b.h
Level $256$
Weight $8$
Character orbit 256.b
Analytic conductor $79.971$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,8,Mod(129,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.129"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-2496] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 4 \beta_1) q^{3} + ( - 8 \beta_{2} - 45 \beta_1) q^{5} + ( - 7 \beta_{3} - 624) q^{7} + ( - 8 \beta_{3} - 437) q^{9} + ( - 75 \beta_{2} + 2260 \beta_1) q^{11} + ( - 120 \beta_{2} + 625 \beta_1) q^{13}+ \cdots + ( - 39545 \beta_{2} + 548380 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2496 q^{7} - 1748 q^{9} + 84800 q^{15} + 34440 q^{17} - 38208 q^{23} - 375260 q^{25} - 503040 q^{31} + 623360 q^{33} + 1188800 q^{39} - 1453800 q^{41} + 989824 q^{47} + 270372 q^{49} - 4516800 q^{55}+ \cdots - 18632120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 16\nu^{3} + 80\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -32\nu^{3} + 160\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} ) / 64 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{3} + 10\beta_{2} ) / 64 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
1.58114 1.58114i
−1.58114 1.58114i
−1.58114 + 1.58114i
1.58114 + 1.58114i
0 58.5964i 0 494.772i 0 −1332.35 0 −1246.54 0
129.2 0 42.5964i 0 314.772i 0 84.3502 0 372.543 0
129.3 0 42.5964i 0 314.772i 0 84.3502 0 372.543 0
129.4 0 58.5964i 0 494.772i 0 −1332.35 0 −1246.54 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.b.h 4
4.b odd 2 1 256.8.b.j 4
8.b even 2 1 inner 256.8.b.h 4
8.d odd 2 1 256.8.b.j 4
16.e even 4 1 32.8.a.b 2
16.e even 4 1 64.8.a.j 2
16.f odd 4 1 32.8.a.d yes 2
16.f odd 4 1 64.8.a.h 2
48.i odd 4 1 288.8.a.o 2
48.i odd 4 1 576.8.a.bf 2
48.k even 4 1 288.8.a.n 2
48.k even 4 1 576.8.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.8.a.b 2 16.e even 4 1
32.8.a.d yes 2 16.f odd 4 1
64.8.a.h 2 16.f odd 4 1
64.8.a.j 2 16.e even 4 1
256.8.b.h 4 1.a even 1 1 trivial
256.8.b.h 4 8.b even 2 1 inner
256.8.b.j 4 4.b odd 2 1
256.8.b.j 4 8.d odd 2 1
288.8.a.n 2 48.k even 4 1
288.8.a.o 2 48.i odd 4 1
576.8.a.be 2 48.k even 4 1
576.8.a.bf 2 48.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(256, [\chi])\):

\( T_{3}^{4} + 5248T_{3}^{2} + 6230016 \) Copy content Toggle raw display
\( T_{7}^{2} + 1248T_{7} - 112384 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 5248 T^{2} + 6230016 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 24254947600 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1248 T - 112384)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 36365724160000 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( (T^{2} - 17220 T - 73323900)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( (T^{2} + 19104 T - 4248481536)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 68\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( (T^{2} + 251520 T + 3425177600)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{2} + 726900 T + 124732277540)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 90\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( (T^{2} - 494912 T - 38062767104)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 60\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T^{2} - 2836000 T + 759262624000)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 16148101167900)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 1551858713600)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 14087847786844)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 20193384103100)^{2} \) Copy content Toggle raw display
show more
show less