Defining parameters
Level: | \( N \) | \(=\) | \( 256 = 2^{8} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 256.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(256, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 236 | 58 | 178 |
Cusp forms | 212 | 54 | 158 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(256, [\chi])\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(256, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(256, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)