Properties

Label 256.6.a.n
Level $256$
Weight $6$
Character orbit 256.a
Self dual yes
Analytic conductor $41.058$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,6,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.0582578721\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.3495824.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 27x^{2} + 164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{2} q^{5} + ( - \beta_{3} + 24) q^{7} + ( - 2 \beta_{3} + 41) q^{9} + ( - 8 \beta_{2} + 5 \beta_1) q^{11} + (3 \beta_{2} - 32 \beta_1) q^{13} + (\beta_{3} + 104) q^{15} + ( - 2 \beta_{3} + 50) q^{17}+ \cdots + (1728 \beta_{2} + 1821 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 96 q^{7} + 164 q^{9} + 416 q^{15} + 200 q^{17} + 2336 q^{23} - 1556 q^{25} + 12928 q^{31} - 2352 q^{33} + 35104 q^{39} + 4568 q^{41} + 54720 q^{47} + 9828 q^{49} + 85472 q^{55} + 2032 q^{57} + 153440 q^{63}+ \cdots - 99576 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 27x^{2} + 164 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 17\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{3} - 18\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 32\nu^{2} - 432 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta_1 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 432 ) / 32 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 17\beta_{2} - 18\beta_1 ) / 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.03776
4.21569
−4.21569
3.03776
0 −23.6095 0 1.38521 0 160.704 0 314.408 0
1.2 0 −3.25452 0 −73.9600 0 −112.704 0 −232.408 0
1.3 0 3.25452 0 73.9600 0 −112.704 0 −232.408 0
1.4 0 23.6095 0 −1.38521 0 160.704 0 314.408 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.6.a.n 4
4.b odd 2 1 256.6.a.k 4
8.b even 2 1 inner 256.6.a.n 4
8.d odd 2 1 256.6.a.k 4
16.e even 4 2 32.6.b.a 4
16.f odd 4 2 8.6.b.a 4
48.i odd 4 2 288.6.d.b 4
48.k even 4 2 72.6.d.b 4
80.i odd 4 2 800.6.f.a 8
80.j even 4 2 200.6.f.a 8
80.k odd 4 2 200.6.d.a 4
80.q even 4 2 800.6.d.a 4
80.s even 4 2 200.6.f.a 8
80.t odd 4 2 800.6.f.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.6.b.a 4 16.f odd 4 2
32.6.b.a 4 16.e even 4 2
72.6.d.b 4 48.k even 4 2
200.6.d.a 4 80.k odd 4 2
200.6.f.a 8 80.j even 4 2
200.6.f.a 8 80.s even 4 2
256.6.a.k 4 4.b odd 2 1
256.6.a.k 4 8.d odd 2 1
256.6.a.n 4 1.a even 1 1 trivial
256.6.a.n 4 8.b even 2 1 inner
288.6.d.b 4 48.i odd 4 2
800.6.d.a 4 80.q even 4 2
800.6.f.a 8 80.i odd 4 2
800.6.f.a 8 80.t odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(256))\):

\( T_{3}^{4} - 568T_{3}^{2} + 5904 \) Copy content Toggle raw display
\( T_{5}^{4} - 5472T_{5}^{2} + 10496 \) Copy content Toggle raw display
\( T_{7}^{2} - 48T_{7} - 18112 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 568T^{2} + 5904 \) Copy content Toggle raw display
$5$ \( T^{4} - 5472 T^{2} + 10496 \) Copy content Toggle raw display
$7$ \( (T^{2} - 48 T - 18112)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 5520765456 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 7999305984 \) Copy content Toggle raw display
$17$ \( (T^{2} - 100 T - 72252)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 120994976016 \) Copy content Toggle raw display
$23$ \( (T^{2} - 1168 T - 2817216)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 535633608132864 \) Copy content Toggle raw display
$31$ \( (T^{2} - 6464 T + 7754752)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 306881230162176 \) Copy content Toggle raw display
$41$ \( (T^{2} - 2284 T - 85109148)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( (T^{2} - 27360 T + 132648192)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 76\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 22\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 41\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 32\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{2} - 103344 T + 2609278272)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 19988 T - 1604540316)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 123936 T + 3701816576)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 72\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T^{2} - 42316 T - 6875717724)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 49788 T - 783309052)^{2} \) Copy content Toggle raw display
show more
show less