Properties

Label 256.4.b.e.129.1
Level $256$
Weight $4$
Character 256.129
Analytic conductor $15.104$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.4.b.e.129.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{3} +10.0000i q^{5} +16.0000 q^{7} -37.0000 q^{9} +O(q^{10})\) \(q-8.00000i q^{3} +10.0000i q^{5} +16.0000 q^{7} -37.0000 q^{9} -40.0000i q^{11} -50.0000i q^{13} +80.0000 q^{15} -30.0000 q^{17} -40.0000i q^{19} -128.000i q^{21} +48.0000 q^{23} +25.0000 q^{25} +80.0000i q^{27} -34.0000i q^{29} -320.000 q^{31} -320.000 q^{33} +160.000i q^{35} -310.000i q^{37} -400.000 q^{39} -410.000 q^{41} +152.000i q^{43} -370.000i q^{45} +416.000 q^{47} -87.0000 q^{49} +240.000i q^{51} +410.000i q^{53} +400.000 q^{55} -320.000 q^{57} -200.000i q^{59} +30.0000i q^{61} -592.000 q^{63} +500.000 q^{65} -776.000i q^{67} -384.000i q^{69} +400.000 q^{71} +630.000 q^{73} -200.000i q^{75} -640.000i q^{77} +1120.00 q^{79} -359.000 q^{81} -552.000i q^{83} -300.000i q^{85} -272.000 q^{87} +326.000 q^{89} -800.000i q^{91} +2560.00i q^{93} +400.000 q^{95} -110.000 q^{97} +1480.00i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{7} - 74 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 32 q^{7} - 74 q^{9} + 160 q^{15} - 60 q^{17} + 96 q^{23} + 50 q^{25} - 640 q^{31} - 640 q^{33} - 800 q^{39} - 820 q^{41} + 832 q^{47} - 174 q^{49} + 800 q^{55} - 640 q^{57} - 1184 q^{63} + 1000 q^{65} + 800 q^{71} + 1260 q^{73} + 2240 q^{79} - 718 q^{81} - 544 q^{87} + 652 q^{89} + 800 q^{95} - 220 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 8.00000i − 1.53960i −0.638285 0.769800i \(-0.720356\pi\)
0.638285 0.769800i \(-0.279644\pi\)
\(4\) 0 0
\(5\) 10.0000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 16.0000 0.863919 0.431959 0.901893i \(-0.357822\pi\)
0.431959 + 0.901893i \(0.357822\pi\)
\(8\) 0 0
\(9\) −37.0000 −1.37037
\(10\) 0 0
\(11\) − 40.0000i − 1.09640i −0.836346 0.548202i \(-0.815312\pi\)
0.836346 0.548202i \(-0.184688\pi\)
\(12\) 0 0
\(13\) − 50.0000i − 1.06673i −0.845885 0.533366i \(-0.820927\pi\)
0.845885 0.533366i \(-0.179073\pi\)
\(14\) 0 0
\(15\) 80.0000 1.37706
\(16\) 0 0
\(17\) −30.0000 −0.428004 −0.214002 0.976833i \(-0.568650\pi\)
−0.214002 + 0.976833i \(0.568650\pi\)
\(18\) 0 0
\(19\) − 40.0000i − 0.482980i −0.970403 0.241490i \(-0.922364\pi\)
0.970403 0.241490i \(-0.0776362\pi\)
\(20\) 0 0
\(21\) − 128.000i − 1.33009i
\(22\) 0 0
\(23\) 48.0000 0.435161 0.217580 0.976042i \(-0.430184\pi\)
0.217580 + 0.976042i \(0.430184\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 80.0000i 0.570222i
\(28\) 0 0
\(29\) − 34.0000i − 0.217712i −0.994058 0.108856i \(-0.965281\pi\)
0.994058 0.108856i \(-0.0347187\pi\)
\(30\) 0 0
\(31\) −320.000 −1.85399 −0.926995 0.375073i \(-0.877617\pi\)
−0.926995 + 0.375073i \(0.877617\pi\)
\(32\) 0 0
\(33\) −320.000 −1.68803
\(34\) 0 0
\(35\) 160.000i 0.772712i
\(36\) 0 0
\(37\) − 310.000i − 1.37740i −0.725048 0.688698i \(-0.758182\pi\)
0.725048 0.688698i \(-0.241818\pi\)
\(38\) 0 0
\(39\) −400.000 −1.64234
\(40\) 0 0
\(41\) −410.000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 152.000i 0.539065i 0.962991 + 0.269532i \(0.0868691\pi\)
−0.962991 + 0.269532i \(0.913131\pi\)
\(44\) 0 0
\(45\) − 370.000i − 1.22570i
\(46\) 0 0
\(47\) 416.000 1.29106 0.645530 0.763735i \(-0.276636\pi\)
0.645530 + 0.763735i \(0.276636\pi\)
\(48\) 0 0
\(49\) −87.0000 −0.253644
\(50\) 0 0
\(51\) 240.000i 0.658955i
\(52\) 0 0
\(53\) 410.000i 1.06260i 0.847184 + 0.531300i \(0.178296\pi\)
−0.847184 + 0.531300i \(0.821704\pi\)
\(54\) 0 0
\(55\) 400.000 0.980654
\(56\) 0 0
\(57\) −320.000 −0.743597
\(58\) 0 0
\(59\) − 200.000i − 0.441318i −0.975351 0.220659i \(-0.929179\pi\)
0.975351 0.220659i \(-0.0708208\pi\)
\(60\) 0 0
\(61\) 30.0000i 0.0629690i 0.999504 + 0.0314845i \(0.0100235\pi\)
−0.999504 + 0.0314845i \(0.989977\pi\)
\(62\) 0 0
\(63\) −592.000 −1.18389
\(64\) 0 0
\(65\) 500.000 0.954113
\(66\) 0 0
\(67\) − 776.000i − 1.41498i −0.706725 0.707489i \(-0.749828\pi\)
0.706725 0.707489i \(-0.250172\pi\)
\(68\) 0 0
\(69\) − 384.000i − 0.669973i
\(70\) 0 0
\(71\) 400.000 0.668609 0.334305 0.942465i \(-0.391499\pi\)
0.334305 + 0.942465i \(0.391499\pi\)
\(72\) 0 0
\(73\) 630.000 1.01008 0.505041 0.863096i \(-0.331478\pi\)
0.505041 + 0.863096i \(0.331478\pi\)
\(74\) 0 0
\(75\) − 200.000i − 0.307920i
\(76\) 0 0
\(77\) − 640.000i − 0.947205i
\(78\) 0 0
\(79\) 1120.00 1.59506 0.797531 0.603278i \(-0.206139\pi\)
0.797531 + 0.603278i \(0.206139\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) − 552.000i − 0.729998i −0.931008 0.364999i \(-0.881069\pi\)
0.931008 0.364999i \(-0.118931\pi\)
\(84\) 0 0
\(85\) − 300.000i − 0.382818i
\(86\) 0 0
\(87\) −272.000 −0.335189
\(88\) 0 0
\(89\) 326.000 0.388269 0.194134 0.980975i \(-0.437810\pi\)
0.194134 + 0.980975i \(0.437810\pi\)
\(90\) 0 0
\(91\) − 800.000i − 0.921569i
\(92\) 0 0
\(93\) 2560.00i 2.85440i
\(94\) 0 0
\(95\) 400.000 0.431991
\(96\) 0 0
\(97\) −110.000 −0.115142 −0.0575712 0.998341i \(-0.518336\pi\)
−0.0575712 + 0.998341i \(0.518336\pi\)
\(98\) 0 0
\(99\) 1480.00i 1.50248i
\(100\) 0 0
\(101\) 1098.00i 1.08173i 0.841108 + 0.540867i \(0.181904\pi\)
−0.841108 + 0.540867i \(0.818096\pi\)
\(102\) 0 0
\(103\) −48.0000 −0.0459183 −0.0229591 0.999736i \(-0.507309\pi\)
−0.0229591 + 0.999736i \(0.507309\pi\)
\(104\) 0 0
\(105\) 1280.00 1.18967
\(106\) 0 0
\(107\) 664.000i 0.599919i 0.953952 + 0.299959i \(0.0969731\pi\)
−0.953952 + 0.299959i \(0.903027\pi\)
\(108\) 0 0
\(109\) − 370.000i − 0.325134i −0.986698 0.162567i \(-0.948023\pi\)
0.986698 0.162567i \(-0.0519773\pi\)
\(110\) 0 0
\(111\) −2480.00 −2.12064
\(112\) 0 0
\(113\) 1490.00 1.24042 0.620210 0.784436i \(-0.287047\pi\)
0.620210 + 0.784436i \(0.287047\pi\)
\(114\) 0 0
\(115\) 480.000i 0.389219i
\(116\) 0 0
\(117\) 1850.00i 1.46182i
\(118\) 0 0
\(119\) −480.000 −0.369761
\(120\) 0 0
\(121\) −269.000 −0.202104
\(122\) 0 0
\(123\) 3280.00i 2.40445i
\(124\) 0 0
\(125\) 1500.00i 1.07331i
\(126\) 0 0
\(127\) 1024.00 0.715475 0.357737 0.933822i \(-0.383548\pi\)
0.357737 + 0.933822i \(0.383548\pi\)
\(128\) 0 0
\(129\) 1216.00 0.829944
\(130\) 0 0
\(131\) − 1160.00i − 0.773662i −0.922151 0.386831i \(-0.873570\pi\)
0.922151 0.386831i \(-0.126430\pi\)
\(132\) 0 0
\(133\) − 640.000i − 0.417256i
\(134\) 0 0
\(135\) −800.000 −0.510022
\(136\) 0 0
\(137\) −570.000 −0.355463 −0.177731 0.984079i \(-0.556876\pi\)
−0.177731 + 0.984079i \(0.556876\pi\)
\(138\) 0 0
\(139\) − 1960.00i − 1.19601i −0.801493 0.598004i \(-0.795961\pi\)
0.801493 0.598004i \(-0.204039\pi\)
\(140\) 0 0
\(141\) − 3328.00i − 1.98772i
\(142\) 0 0
\(143\) −2000.00 −1.16957
\(144\) 0 0
\(145\) 340.000 0.194727
\(146\) 0 0
\(147\) 696.000i 0.390511i
\(148\) 0 0
\(149\) 2010.00i 1.10514i 0.833467 + 0.552569i \(0.186352\pi\)
−0.833467 + 0.552569i \(0.813648\pi\)
\(150\) 0 0
\(151\) −720.000 −0.388032 −0.194016 0.980998i \(-0.562151\pi\)
−0.194016 + 0.980998i \(0.562151\pi\)
\(152\) 0 0
\(153\) 1110.00 0.586524
\(154\) 0 0
\(155\) − 3200.00i − 1.65826i
\(156\) 0 0
\(157\) 1790.00i 0.909921i 0.890512 + 0.454960i \(0.150347\pi\)
−0.890512 + 0.454960i \(0.849653\pi\)
\(158\) 0 0
\(159\) 3280.00 1.63598
\(160\) 0 0
\(161\) 768.000 0.375943
\(162\) 0 0
\(163\) 1208.00i 0.580478i 0.956954 + 0.290239i \(0.0937348\pi\)
−0.956954 + 0.290239i \(0.906265\pi\)
\(164\) 0 0
\(165\) − 3200.00i − 1.50982i
\(166\) 0 0
\(167\) 2896.00 1.34191 0.670956 0.741497i \(-0.265884\pi\)
0.670956 + 0.741497i \(0.265884\pi\)
\(168\) 0 0
\(169\) −303.000 −0.137915
\(170\) 0 0
\(171\) 1480.00i 0.661862i
\(172\) 0 0
\(173\) 750.000i 0.329604i 0.986327 + 0.164802i \(0.0526985\pi\)
−0.986327 + 0.164802i \(0.947302\pi\)
\(174\) 0 0
\(175\) 400.000 0.172784
\(176\) 0 0
\(177\) −1600.00 −0.679454
\(178\) 0 0
\(179\) − 2280.00i − 0.952040i −0.879434 0.476020i \(-0.842079\pi\)
0.879434 0.476020i \(-0.157921\pi\)
\(180\) 0 0
\(181\) 442.000i 0.181512i 0.995873 + 0.0907558i \(0.0289283\pi\)
−0.995873 + 0.0907558i \(0.971072\pi\)
\(182\) 0 0
\(183\) 240.000 0.0969471
\(184\) 0 0
\(185\) 3100.00 1.23198
\(186\) 0 0
\(187\) 1200.00i 0.469266i
\(188\) 0 0
\(189\) 1280.00i 0.492626i
\(190\) 0 0
\(191\) 1920.00 0.727363 0.363681 0.931523i \(-0.381520\pi\)
0.363681 + 0.931523i \(0.381520\pi\)
\(192\) 0 0
\(193\) −5070.00 −1.89091 −0.945457 0.325746i \(-0.894385\pi\)
−0.945457 + 0.325746i \(0.894385\pi\)
\(194\) 0 0
\(195\) − 4000.00i − 1.46895i
\(196\) 0 0
\(197\) − 1910.00i − 0.690771i −0.938461 0.345385i \(-0.887748\pi\)
0.938461 0.345385i \(-0.112252\pi\)
\(198\) 0 0
\(199\) 2960.00 1.05442 0.527208 0.849736i \(-0.323239\pi\)
0.527208 + 0.849736i \(0.323239\pi\)
\(200\) 0 0
\(201\) −6208.00 −2.17850
\(202\) 0 0
\(203\) − 544.000i − 0.188085i
\(204\) 0 0
\(205\) − 4100.00i − 1.39686i
\(206\) 0 0
\(207\) −1776.00 −0.596331
\(208\) 0 0
\(209\) −1600.00 −0.529542
\(210\) 0 0
\(211\) − 40.0000i − 0.0130508i −0.999979 0.00652539i \(-0.997923\pi\)
0.999979 0.00652539i \(-0.00207711\pi\)
\(212\) 0 0
\(213\) − 3200.00i − 1.02939i
\(214\) 0 0
\(215\) −1520.00 −0.482154
\(216\) 0 0
\(217\) −5120.00 −1.60170
\(218\) 0 0
\(219\) − 5040.00i − 1.55512i
\(220\) 0 0
\(221\) 1500.00i 0.456565i
\(222\) 0 0
\(223\) −4288.00 −1.28765 −0.643824 0.765173i \(-0.722653\pi\)
−0.643824 + 0.765173i \(0.722653\pi\)
\(224\) 0 0
\(225\) −925.000 −0.274074
\(226\) 0 0
\(227\) 6456.00i 1.88766i 0.330425 + 0.943832i \(0.392808\pi\)
−0.330425 + 0.943832i \(0.607192\pi\)
\(228\) 0 0
\(229\) 1066.00i 0.307613i 0.988101 + 0.153806i \(0.0491532\pi\)
−0.988101 + 0.153806i \(0.950847\pi\)
\(230\) 0 0
\(231\) −5120.00 −1.45832
\(232\) 0 0
\(233\) 5910.00 1.66170 0.830852 0.556494i \(-0.187854\pi\)
0.830852 + 0.556494i \(0.187854\pi\)
\(234\) 0 0
\(235\) 4160.00i 1.15476i
\(236\) 0 0
\(237\) − 8960.00i − 2.45576i
\(238\) 0 0
\(239\) 3360.00 0.909374 0.454687 0.890651i \(-0.349751\pi\)
0.454687 + 0.890651i \(0.349751\pi\)
\(240\) 0 0
\(241\) 3970.00 1.06112 0.530561 0.847647i \(-0.321981\pi\)
0.530561 + 0.847647i \(0.321981\pi\)
\(242\) 0 0
\(243\) 5032.00i 1.32841i
\(244\) 0 0
\(245\) − 870.000i − 0.226866i
\(246\) 0 0
\(247\) −2000.00 −0.515210
\(248\) 0 0
\(249\) −4416.00 −1.12391
\(250\) 0 0
\(251\) 6840.00i 1.72007i 0.510237 + 0.860034i \(0.329558\pi\)
−0.510237 + 0.860034i \(0.670442\pi\)
\(252\) 0 0
\(253\) − 1920.00i − 0.477112i
\(254\) 0 0
\(255\) −2400.00 −0.589388
\(256\) 0 0
\(257\) 4610.00 1.11893 0.559463 0.828855i \(-0.311007\pi\)
0.559463 + 0.828855i \(0.311007\pi\)
\(258\) 0 0
\(259\) − 4960.00i − 1.18996i
\(260\) 0 0
\(261\) 1258.00i 0.298346i
\(262\) 0 0
\(263\) −4848.00 −1.13666 −0.568328 0.822802i \(-0.692409\pi\)
−0.568328 + 0.822802i \(0.692409\pi\)
\(264\) 0 0
\(265\) −4100.00 −0.950419
\(266\) 0 0
\(267\) − 2608.00i − 0.597779i
\(268\) 0 0
\(269\) 5550.00i 1.25795i 0.777424 + 0.628977i \(0.216526\pi\)
−0.777424 + 0.628977i \(0.783474\pi\)
\(270\) 0 0
\(271\) 480.000 0.107594 0.0537969 0.998552i \(-0.482868\pi\)
0.0537969 + 0.998552i \(0.482868\pi\)
\(272\) 0 0
\(273\) −6400.00 −1.41885
\(274\) 0 0
\(275\) − 1000.00i − 0.219281i
\(276\) 0 0
\(277\) − 1030.00i − 0.223418i −0.993741 0.111709i \(-0.964368\pi\)
0.993741 0.111709i \(-0.0356324\pi\)
\(278\) 0 0
\(279\) 11840.0 2.54065
\(280\) 0 0
\(281\) 3270.00 0.694206 0.347103 0.937827i \(-0.387165\pi\)
0.347103 + 0.937827i \(0.387165\pi\)
\(282\) 0 0
\(283\) 2168.00i 0.455386i 0.973733 + 0.227693i \(0.0731183\pi\)
−0.973733 + 0.227693i \(0.926882\pi\)
\(284\) 0 0
\(285\) − 3200.00i − 0.665093i
\(286\) 0 0
\(287\) −6560.00 −1.34921
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) 880.000i 0.177273i
\(292\) 0 0
\(293\) − 2070.00i − 0.412733i −0.978475 0.206366i \(-0.933836\pi\)
0.978475 0.206366i \(-0.0661639\pi\)
\(294\) 0 0
\(295\) 2000.00 0.394727
\(296\) 0 0
\(297\) 3200.00 0.625195
\(298\) 0 0
\(299\) − 2400.00i − 0.464199i
\(300\) 0 0
\(301\) 2432.00i 0.465708i
\(302\) 0 0
\(303\) 8784.00 1.66544
\(304\) 0 0
\(305\) −300.000 −0.0563211
\(306\) 0 0
\(307\) − 1896.00i − 0.352477i −0.984347 0.176238i \(-0.943607\pi\)
0.984347 0.176238i \(-0.0563930\pi\)
\(308\) 0 0
\(309\) 384.000i 0.0706958i
\(310\) 0 0
\(311\) −1680.00 −0.306315 −0.153158 0.988202i \(-0.548944\pi\)
−0.153158 + 0.988202i \(0.548944\pi\)
\(312\) 0 0
\(313\) −970.000 −0.175168 −0.0875841 0.996157i \(-0.527915\pi\)
−0.0875841 + 0.996157i \(0.527915\pi\)
\(314\) 0 0
\(315\) − 5920.00i − 1.05890i
\(316\) 0 0
\(317\) 7230.00i 1.28100i 0.767958 + 0.640500i \(0.221273\pi\)
−0.767958 + 0.640500i \(0.778727\pi\)
\(318\) 0 0
\(319\) −1360.00 −0.238700
\(320\) 0 0
\(321\) 5312.00 0.923635
\(322\) 0 0
\(323\) 1200.00i 0.206718i
\(324\) 0 0
\(325\) − 1250.00i − 0.213346i
\(326\) 0 0
\(327\) −2960.00 −0.500576
\(328\) 0 0
\(329\) 6656.00 1.11537
\(330\) 0 0
\(331\) − 5800.00i − 0.963132i −0.876410 0.481566i \(-0.840068\pi\)
0.876410 0.481566i \(-0.159932\pi\)
\(332\) 0 0
\(333\) 11470.0i 1.88754i
\(334\) 0 0
\(335\) 7760.00 1.26559
\(336\) 0 0
\(337\) −1870.00 −0.302271 −0.151136 0.988513i \(-0.548293\pi\)
−0.151136 + 0.988513i \(0.548293\pi\)
\(338\) 0 0
\(339\) − 11920.0i − 1.90975i
\(340\) 0 0
\(341\) 12800.0i 2.03272i
\(342\) 0 0
\(343\) −6880.00 −1.08305
\(344\) 0 0
\(345\) 3840.00 0.599242
\(346\) 0 0
\(347\) 376.000i 0.0581693i 0.999577 + 0.0290846i \(0.00925923\pi\)
−0.999577 + 0.0290846i \(0.990741\pi\)
\(348\) 0 0
\(349\) − 7586.00i − 1.16352i −0.813360 0.581761i \(-0.802364\pi\)
0.813360 0.581761i \(-0.197636\pi\)
\(350\) 0 0
\(351\) 4000.00 0.608274
\(352\) 0 0
\(353\) 2530.00 0.381468 0.190734 0.981642i \(-0.438913\pi\)
0.190734 + 0.981642i \(0.438913\pi\)
\(354\) 0 0
\(355\) 4000.00i 0.598022i
\(356\) 0 0
\(357\) 3840.00i 0.569284i
\(358\) 0 0
\(359\) 9680.00 1.42309 0.711547 0.702638i \(-0.247995\pi\)
0.711547 + 0.702638i \(0.247995\pi\)
\(360\) 0 0
\(361\) 5259.00 0.766730
\(362\) 0 0
\(363\) 2152.00i 0.311159i
\(364\) 0 0
\(365\) 6300.00i 0.903444i
\(366\) 0 0
\(367\) −2784.00 −0.395977 −0.197989 0.980204i \(-0.563441\pi\)
−0.197989 + 0.980204i \(0.563441\pi\)
\(368\) 0 0
\(369\) 15170.0 2.14016
\(370\) 0 0
\(371\) 6560.00i 0.918001i
\(372\) 0 0
\(373\) − 7910.00i − 1.09803i −0.835813 0.549014i \(-0.815003\pi\)
0.835813 0.549014i \(-0.184997\pi\)
\(374\) 0 0
\(375\) 12000.0 1.65247
\(376\) 0 0
\(377\) −1700.00 −0.232240
\(378\) 0 0
\(379\) 1720.00i 0.233115i 0.993184 + 0.116557i \(0.0371859\pi\)
−0.993184 + 0.116557i \(0.962814\pi\)
\(380\) 0 0
\(381\) − 8192.00i − 1.10155i
\(382\) 0 0
\(383\) −11008.0 −1.46862 −0.734311 0.678813i \(-0.762495\pi\)
−0.734311 + 0.678813i \(0.762495\pi\)
\(384\) 0 0
\(385\) 6400.00 0.847206
\(386\) 0 0
\(387\) − 5624.00i − 0.738718i
\(388\) 0 0
\(389\) 12330.0i 1.60708i 0.595248 + 0.803542i \(0.297054\pi\)
−0.595248 + 0.803542i \(0.702946\pi\)
\(390\) 0 0
\(391\) −1440.00 −0.186250
\(392\) 0 0
\(393\) −9280.00 −1.19113
\(394\) 0 0
\(395\) 11200.0i 1.42667i
\(396\) 0 0
\(397\) − 4370.00i − 0.552453i −0.961093 0.276227i \(-0.910916\pi\)
0.961093 0.276227i \(-0.0890841\pi\)
\(398\) 0 0
\(399\) −5120.00 −0.642408
\(400\) 0 0
\(401\) 3298.00 0.410709 0.205354 0.978688i \(-0.434165\pi\)
0.205354 + 0.978688i \(0.434165\pi\)
\(402\) 0 0
\(403\) 16000.0i 1.97771i
\(404\) 0 0
\(405\) − 3590.00i − 0.440466i
\(406\) 0 0
\(407\) −12400.0 −1.51018
\(408\) 0 0
\(409\) 9110.00 1.10137 0.550685 0.834713i \(-0.314366\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(410\) 0 0
\(411\) 4560.00i 0.547271i
\(412\) 0 0
\(413\) − 3200.00i − 0.381263i
\(414\) 0 0
\(415\) 5520.00 0.652930
\(416\) 0 0
\(417\) −15680.0 −1.84137
\(418\) 0 0
\(419\) − 7880.00i − 0.918767i −0.888238 0.459383i \(-0.848070\pi\)
0.888238 0.459383i \(-0.151930\pi\)
\(420\) 0 0
\(421\) 5290.00i 0.612396i 0.951968 + 0.306198i \(0.0990570\pi\)
−0.951968 + 0.306198i \(0.900943\pi\)
\(422\) 0 0
\(423\) −15392.0 −1.76923
\(424\) 0 0
\(425\) −750.000 −0.0856008
\(426\) 0 0
\(427\) 480.000i 0.0544001i
\(428\) 0 0
\(429\) 16000.0i 1.80067i
\(430\) 0 0
\(431\) −13920.0 −1.55569 −0.777845 0.628456i \(-0.783687\pi\)
−0.777845 + 0.628456i \(0.783687\pi\)
\(432\) 0 0
\(433\) 4930.00 0.547161 0.273580 0.961849i \(-0.411792\pi\)
0.273580 + 0.961849i \(0.411792\pi\)
\(434\) 0 0
\(435\) − 2720.00i − 0.299802i
\(436\) 0 0
\(437\) − 1920.00i − 0.210174i
\(438\) 0 0
\(439\) −10640.0 −1.15676 −0.578382 0.815766i \(-0.696316\pi\)
−0.578382 + 0.815766i \(0.696316\pi\)
\(440\) 0 0
\(441\) 3219.00 0.347587
\(442\) 0 0
\(443\) − 9288.00i − 0.996131i −0.867139 0.498066i \(-0.834044\pi\)
0.867139 0.498066i \(-0.165956\pi\)
\(444\) 0 0
\(445\) 3260.00i 0.347278i
\(446\) 0 0
\(447\) 16080.0 1.70147
\(448\) 0 0
\(449\) 12850.0 1.35062 0.675311 0.737533i \(-0.264010\pi\)
0.675311 + 0.737533i \(0.264010\pi\)
\(450\) 0 0
\(451\) 16400.0i 1.71230i
\(452\) 0 0
\(453\) 5760.00i 0.597414i
\(454\) 0 0
\(455\) 8000.00 0.824276
\(456\) 0 0
\(457\) −10490.0 −1.07375 −0.536873 0.843663i \(-0.680394\pi\)
−0.536873 + 0.843663i \(0.680394\pi\)
\(458\) 0 0
\(459\) − 2400.00i − 0.244058i
\(460\) 0 0
\(461\) 11118.0i 1.12325i 0.827393 + 0.561624i \(0.189823\pi\)
−0.827393 + 0.561624i \(0.810177\pi\)
\(462\) 0 0
\(463\) −5792.00 −0.581376 −0.290688 0.956818i \(-0.593884\pi\)
−0.290688 + 0.956818i \(0.593884\pi\)
\(464\) 0 0
\(465\) −25600.0 −2.55306
\(466\) 0 0
\(467\) − 2216.00i − 0.219581i −0.993955 0.109790i \(-0.964982\pi\)
0.993955 0.109790i \(-0.0350180\pi\)
\(468\) 0 0
\(469\) − 12416.0i − 1.22243i
\(470\) 0 0
\(471\) 14320.0 1.40091
\(472\) 0 0
\(473\) 6080.00 0.591033
\(474\) 0 0
\(475\) − 1000.00i − 0.0965961i
\(476\) 0 0
\(477\) − 15170.0i − 1.45616i
\(478\) 0 0
\(479\) 10560.0 1.00730 0.503652 0.863907i \(-0.331989\pi\)
0.503652 + 0.863907i \(0.331989\pi\)
\(480\) 0 0
\(481\) −15500.0 −1.46931
\(482\) 0 0
\(483\) − 6144.00i − 0.578803i
\(484\) 0 0
\(485\) − 1100.00i − 0.102986i
\(486\) 0 0
\(487\) 13264.0 1.23419 0.617094 0.786890i \(-0.288310\pi\)
0.617094 + 0.786890i \(0.288310\pi\)
\(488\) 0 0
\(489\) 9664.00 0.893704
\(490\) 0 0
\(491\) − 4840.00i − 0.444860i −0.974949 0.222430i \(-0.928601\pi\)
0.974949 0.222430i \(-0.0713988\pi\)
\(492\) 0 0
\(493\) 1020.00i 0.0931815i
\(494\) 0 0
\(495\) −14800.0 −1.34386
\(496\) 0 0
\(497\) 6400.00 0.577624
\(498\) 0 0
\(499\) − 19560.0i − 1.75476i −0.479795 0.877381i \(-0.659289\pi\)
0.479795 0.877381i \(-0.340711\pi\)
\(500\) 0 0
\(501\) − 23168.0i − 2.06601i
\(502\) 0 0
\(503\) −528.000 −0.0468039 −0.0234019 0.999726i \(-0.507450\pi\)
−0.0234019 + 0.999726i \(0.507450\pi\)
\(504\) 0 0
\(505\) −10980.0 −0.967532
\(506\) 0 0
\(507\) 2424.00i 0.212335i
\(508\) 0 0
\(509\) − 19554.0i − 1.70278i −0.524532 0.851391i \(-0.675760\pi\)
0.524532 0.851391i \(-0.324240\pi\)
\(510\) 0 0
\(511\) 10080.0 0.872628
\(512\) 0 0
\(513\) 3200.00 0.275406
\(514\) 0 0
\(515\) − 480.000i − 0.0410705i
\(516\) 0 0
\(517\) − 16640.0i − 1.41552i
\(518\) 0 0
\(519\) 6000.00 0.507458
\(520\) 0 0
\(521\) −15162.0 −1.27497 −0.637485 0.770463i \(-0.720025\pi\)
−0.637485 + 0.770463i \(0.720025\pi\)
\(522\) 0 0
\(523\) 10968.0i 0.917012i 0.888691 + 0.458506i \(0.151615\pi\)
−0.888691 + 0.458506i \(0.848385\pi\)
\(524\) 0 0
\(525\) − 3200.00i − 0.266018i
\(526\) 0 0
\(527\) 9600.00 0.793515
\(528\) 0 0
\(529\) −9863.00 −0.810635
\(530\) 0 0
\(531\) 7400.00i 0.604770i
\(532\) 0 0
\(533\) 20500.0i 1.66595i
\(534\) 0 0
\(535\) −6640.00 −0.536584
\(536\) 0 0
\(537\) −18240.0 −1.46576
\(538\) 0 0
\(539\) 3480.00i 0.278097i
\(540\) 0 0
\(541\) − 6722.00i − 0.534198i −0.963669 0.267099i \(-0.913935\pi\)
0.963669 0.267099i \(-0.0860651\pi\)
\(542\) 0 0
\(543\) 3536.00 0.279455
\(544\) 0 0
\(545\) 3700.00 0.290808
\(546\) 0 0
\(547\) − 20424.0i − 1.59647i −0.602348 0.798233i \(-0.705768\pi\)
0.602348 0.798233i \(-0.294232\pi\)
\(548\) 0 0
\(549\) − 1110.00i − 0.0862908i
\(550\) 0 0
\(551\) −1360.00 −0.105151
\(552\) 0 0
\(553\) 17920.0 1.37800
\(554\) 0 0
\(555\) − 24800.0i − 1.89676i
\(556\) 0 0
\(557\) − 6610.00i − 0.502827i −0.967880 0.251414i \(-0.919105\pi\)
0.967880 0.251414i \(-0.0808954\pi\)
\(558\) 0 0
\(559\) 7600.00 0.575037
\(560\) 0 0
\(561\) 9600.00 0.722482
\(562\) 0 0
\(563\) 2712.00i 0.203015i 0.994835 + 0.101507i \(0.0323665\pi\)
−0.994835 + 0.101507i \(0.967633\pi\)
\(564\) 0 0
\(565\) 14900.0i 1.10946i
\(566\) 0 0
\(567\) −5744.00 −0.425441
\(568\) 0 0
\(569\) −3530.00 −0.260080 −0.130040 0.991509i \(-0.541511\pi\)
−0.130040 + 0.991509i \(0.541511\pi\)
\(570\) 0 0
\(571\) − 13640.0i − 0.999678i −0.866118 0.499839i \(-0.833392\pi\)
0.866118 0.499839i \(-0.166608\pi\)
\(572\) 0 0
\(573\) − 15360.0i − 1.11985i
\(574\) 0 0
\(575\) 1200.00 0.0870321
\(576\) 0 0
\(577\) −6270.00 −0.452380 −0.226190 0.974083i \(-0.572627\pi\)
−0.226190 + 0.974083i \(0.572627\pi\)
\(578\) 0 0
\(579\) 40560.0i 2.91125i
\(580\) 0 0
\(581\) − 8832.00i − 0.630659i
\(582\) 0 0
\(583\) 16400.0 1.16504
\(584\) 0 0
\(585\) −18500.0 −1.30749
\(586\) 0 0
\(587\) − 8616.00i − 0.605827i −0.953018 0.302913i \(-0.902041\pi\)
0.953018 0.302913i \(-0.0979593\pi\)
\(588\) 0 0
\(589\) 12800.0i 0.895441i
\(590\) 0 0
\(591\) −15280.0 −1.06351
\(592\) 0 0
\(593\) 5490.00 0.380181 0.190090 0.981767i \(-0.439122\pi\)
0.190090 + 0.981767i \(0.439122\pi\)
\(594\) 0 0
\(595\) − 4800.00i − 0.330724i
\(596\) 0 0
\(597\) − 23680.0i − 1.62338i
\(598\) 0 0
\(599\) −15440.0 −1.05319 −0.526595 0.850116i \(-0.676532\pi\)
−0.526595 + 0.850116i \(0.676532\pi\)
\(600\) 0 0
\(601\) −8890.00 −0.603379 −0.301689 0.953406i \(-0.597551\pi\)
−0.301689 + 0.953406i \(0.597551\pi\)
\(602\) 0 0
\(603\) 28712.0i 1.93904i
\(604\) 0 0
\(605\) − 2690.00i − 0.180767i
\(606\) 0 0
\(607\) −23744.0 −1.58771 −0.793854 0.608108i \(-0.791929\pi\)
−0.793854 + 0.608108i \(0.791929\pi\)
\(608\) 0 0
\(609\) −4352.00 −0.289576
\(610\) 0 0
\(611\) − 20800.0i − 1.37721i
\(612\) 0 0
\(613\) 15210.0i 1.00216i 0.865400 + 0.501082i \(0.167064\pi\)
−0.865400 + 0.501082i \(0.832936\pi\)
\(614\) 0 0
\(615\) −32800.0 −2.15061
\(616\) 0 0
\(617\) 12630.0 0.824092 0.412046 0.911163i \(-0.364814\pi\)
0.412046 + 0.911163i \(0.364814\pi\)
\(618\) 0 0
\(619\) 11160.0i 0.724650i 0.932052 + 0.362325i \(0.118017\pi\)
−0.932052 + 0.362325i \(0.881983\pi\)
\(620\) 0 0
\(621\) 3840.00i 0.248138i
\(622\) 0 0
\(623\) 5216.00 0.335433
\(624\) 0 0
\(625\) −11875.0 −0.760000
\(626\) 0 0
\(627\) 12800.0i 0.815284i
\(628\) 0 0
\(629\) 9300.00i 0.589531i
\(630\) 0 0
\(631\) 13040.0 0.822685 0.411342 0.911481i \(-0.365060\pi\)
0.411342 + 0.911481i \(0.365060\pi\)
\(632\) 0 0
\(633\) −320.000 −0.0200930
\(634\) 0 0
\(635\) 10240.0i 0.639940i
\(636\) 0 0
\(637\) 4350.00i 0.270570i
\(638\) 0 0
\(639\) −14800.0 −0.916242
\(640\) 0 0
\(641\) −16910.0 −1.04197 −0.520987 0.853565i \(-0.674436\pi\)
−0.520987 + 0.853565i \(0.674436\pi\)
\(642\) 0 0
\(643\) − 4488.00i − 0.275256i −0.990484 0.137628i \(-0.956052\pi\)
0.990484 0.137628i \(-0.0439478\pi\)
\(644\) 0 0
\(645\) 12160.0i 0.742325i
\(646\) 0 0
\(647\) 2064.00 0.125416 0.0627080 0.998032i \(-0.480026\pi\)
0.0627080 + 0.998032i \(0.480026\pi\)
\(648\) 0 0
\(649\) −8000.00 −0.483864
\(650\) 0 0
\(651\) 40960.0i 2.46597i
\(652\) 0 0
\(653\) 4270.00i 0.255893i 0.991781 + 0.127946i \(0.0408386\pi\)
−0.991781 + 0.127946i \(0.959161\pi\)
\(654\) 0 0
\(655\) 11600.0 0.691984
\(656\) 0 0
\(657\) −23310.0 −1.38419
\(658\) 0 0
\(659\) 19800.0i 1.17041i 0.810886 + 0.585204i \(0.198985\pi\)
−0.810886 + 0.585204i \(0.801015\pi\)
\(660\) 0 0
\(661\) − 27110.0i − 1.59524i −0.603157 0.797622i \(-0.706091\pi\)
0.603157 0.797622i \(-0.293909\pi\)
\(662\) 0 0
\(663\) 12000.0 0.702928
\(664\) 0 0
\(665\) 6400.00 0.373205
\(666\) 0 0
\(667\) − 1632.00i − 0.0947396i
\(668\) 0 0
\(669\) 34304.0i 1.98247i
\(670\) 0 0
\(671\) 1200.00 0.0690395
\(672\) 0 0
\(673\) 32210.0 1.84488 0.922440 0.386140i \(-0.126192\pi\)
0.922440 + 0.386140i \(0.126192\pi\)
\(674\) 0 0
\(675\) 2000.00i 0.114044i
\(676\) 0 0
\(677\) − 27190.0i − 1.54357i −0.635884 0.771785i \(-0.719364\pi\)
0.635884 0.771785i \(-0.280636\pi\)
\(678\) 0 0
\(679\) −1760.00 −0.0994736
\(680\) 0 0
\(681\) 51648.0 2.90625
\(682\) 0 0
\(683\) − 20328.0i − 1.13884i −0.822046 0.569421i \(-0.807167\pi\)
0.822046 0.569421i \(-0.192833\pi\)
\(684\) 0 0
\(685\) − 5700.00i − 0.317935i
\(686\) 0 0
\(687\) 8528.00 0.473600
\(688\) 0 0
\(689\) 20500.0 1.13351
\(690\) 0 0
\(691\) − 12520.0i − 0.689267i −0.938737 0.344633i \(-0.888003\pi\)
0.938737 0.344633i \(-0.111997\pi\)
\(692\) 0 0
\(693\) 23680.0i 1.29802i
\(694\) 0 0
\(695\) 19600.0 1.06974
\(696\) 0 0
\(697\) 12300.0 0.668430
\(698\) 0 0
\(699\) − 47280.0i − 2.55836i
\(700\) 0 0
\(701\) 11550.0i 0.622307i 0.950360 + 0.311154i \(0.100715\pi\)
−0.950360 + 0.311154i \(0.899285\pi\)
\(702\) 0 0
\(703\) −12400.0 −0.665256
\(704\) 0 0
\(705\) 33280.0 1.77787
\(706\) 0 0
\(707\) 17568.0i 0.934530i
\(708\) 0 0
\(709\) 34154.0i 1.80914i 0.426325 + 0.904570i \(0.359808\pi\)
−0.426325 + 0.904570i \(0.640192\pi\)
\(710\) 0 0
\(711\) −41440.0 −2.18582
\(712\) 0 0
\(713\) −15360.0 −0.806783
\(714\) 0 0
\(715\) − 20000.0i − 1.04609i
\(716\) 0 0
\(717\) − 26880.0i − 1.40007i
\(718\) 0 0
\(719\) 22880.0 1.18676 0.593380 0.804923i \(-0.297793\pi\)
0.593380 + 0.804923i \(0.297793\pi\)
\(720\) 0 0
\(721\) −768.000 −0.0396696
\(722\) 0 0
\(723\) − 31760.0i − 1.63370i
\(724\) 0 0
\(725\) − 850.000i − 0.0435424i
\(726\) 0 0
\(727\) 10416.0 0.531373 0.265686 0.964060i \(-0.414401\pi\)
0.265686 + 0.964060i \(0.414401\pi\)
\(728\) 0 0
\(729\) 30563.0 1.55276
\(730\) 0 0
\(731\) − 4560.00i − 0.230722i
\(732\) 0 0
\(733\) 14750.0i 0.743252i 0.928383 + 0.371626i \(0.121200\pi\)
−0.928383 + 0.371626i \(0.878800\pi\)
\(734\) 0 0
\(735\) −6960.00 −0.349284
\(736\) 0 0
\(737\) −31040.0 −1.55139
\(738\) 0 0
\(739\) 2360.00i 0.117475i 0.998273 + 0.0587375i \(0.0187075\pi\)
−0.998273 + 0.0587375i \(0.981293\pi\)
\(740\) 0 0
\(741\) 16000.0i 0.793218i
\(742\) 0 0
\(743\) 32208.0 1.59031 0.795153 0.606409i \(-0.207391\pi\)
0.795153 + 0.606409i \(0.207391\pi\)
\(744\) 0 0
\(745\) −20100.0 −0.988466
\(746\) 0 0
\(747\) 20424.0i 1.00037i
\(748\) 0 0
\(749\) 10624.0i 0.518281i
\(750\) 0 0
\(751\) 36640.0 1.78031 0.890155 0.455658i \(-0.150596\pi\)
0.890155 + 0.455658i \(0.150596\pi\)
\(752\) 0 0
\(753\) 54720.0 2.64822
\(754\) 0 0
\(755\) − 7200.00i − 0.347066i
\(756\) 0 0
\(757\) 12090.0i 0.580474i 0.956955 + 0.290237i \(0.0937341\pi\)
−0.956955 + 0.290237i \(0.906266\pi\)
\(758\) 0 0
\(759\) −15360.0 −0.734562
\(760\) 0 0
\(761\) 3318.00 0.158052 0.0790259 0.996873i \(-0.474819\pi\)
0.0790259 + 0.996873i \(0.474819\pi\)
\(762\) 0 0
\(763\) − 5920.00i − 0.280889i
\(764\) 0 0
\(765\) 11100.0i 0.524603i
\(766\) 0 0
\(767\) −10000.0 −0.470768
\(768\) 0 0
\(769\) 11506.0 0.539554 0.269777 0.962923i \(-0.413050\pi\)
0.269777 + 0.962923i \(0.413050\pi\)
\(770\) 0 0
\(771\) − 36880.0i − 1.72270i
\(772\) 0 0
\(773\) − 22230.0i − 1.03436i −0.855878 0.517178i \(-0.826982\pi\)
0.855878 0.517178i \(-0.173018\pi\)
\(774\) 0 0
\(775\) −8000.00 −0.370798
\(776\) 0 0
\(777\) −39680.0 −1.83206
\(778\) 0 0
\(779\) 16400.0i 0.754289i
\(780\) 0 0
\(781\) − 16000.0i − 0.733067i
\(782\) 0 0
\(783\) 2720.00 0.124144
\(784\) 0 0
\(785\) −17900.0 −0.813858
\(786\) 0 0
\(787\) 21336.0i 0.966387i 0.875514 + 0.483193i \(0.160523\pi\)
−0.875514 + 0.483193i \(0.839477\pi\)
\(788\) 0 0
\(789\) 38784.0i 1.75000i
\(790\) 0 0
\(791\) 23840.0 1.07162
\(792\) 0 0
\(793\) 1500.00 0.0671709
\(794\) 0 0
\(795\) 32800.0i 1.46327i
\(796\) 0 0
\(797\) − 7170.00i − 0.318663i −0.987225 0.159332i \(-0.949066\pi\)
0.987225 0.159332i \(-0.0509339\pi\)
\(798\) 0 0
\(799\) −12480.0 −0.552579
\(800\) 0 0
\(801\) −12062.0 −0.532072
\(802\) 0 0
\(803\) − 25200.0i − 1.10746i
\(804\) 0 0
\(805\) 7680.00i 0.336254i
\(806\) 0 0
\(807\) 44400.0 1.93675
\(808\) 0 0
\(809\) 23654.0 1.02797 0.513987 0.857798i \(-0.328168\pi\)
0.513987 + 0.857798i \(0.328168\pi\)
\(810\) 0 0
\(811\) − 30440.0i − 1.31799i −0.752146 0.658997i \(-0.770981\pi\)
0.752146 0.658997i \(-0.229019\pi\)
\(812\) 0 0
\(813\) − 3840.00i − 0.165652i
\(814\) 0 0
\(815\) −12080.0 −0.519195
\(816\) 0 0
\(817\) 6080.00 0.260358
\(818\) 0 0
\(819\) 29600.0i 1.26289i
\(820\) 0 0
\(821\) 19930.0i 0.847213i 0.905846 + 0.423606i \(0.139236\pi\)
−0.905846 + 0.423606i \(0.860764\pi\)
\(822\) 0 0
\(823\) −9872.00 −0.418124 −0.209062 0.977902i \(-0.567041\pi\)
−0.209062 + 0.977902i \(0.567041\pi\)
\(824\) 0 0
\(825\) −8000.00 −0.337605
\(826\) 0 0
\(827\) − 5704.00i − 0.239840i −0.992784 0.119920i \(-0.961736\pi\)
0.992784 0.119920i \(-0.0382638\pi\)
\(828\) 0 0
\(829\) 27230.0i 1.14082i 0.821361 + 0.570408i \(0.193215\pi\)
−0.821361 + 0.570408i \(0.806785\pi\)
\(830\) 0 0
\(831\) −8240.00 −0.343974
\(832\) 0 0
\(833\) 2610.00 0.108561
\(834\) 0 0
\(835\) 28960.0i 1.20024i
\(836\) 0 0
\(837\) − 25600.0i − 1.05719i
\(838\) 0 0
\(839\) −18800.0 −0.773597 −0.386799 0.922164i \(-0.626419\pi\)
−0.386799 + 0.922164i \(0.626419\pi\)
\(840\) 0 0
\(841\) 23233.0 0.952602
\(842\) 0 0
\(843\) − 26160.0i − 1.06880i
\(844\) 0 0
\(845\) − 3030.00i − 0.123355i
\(846\) 0 0
\(847\) −4304.00 −0.174601
\(848\) 0 0
\(849\) 17344.0 0.701113
\(850\) 0 0
\(851\) − 14880.0i − 0.599389i
\(852\) 0 0
\(853\) 12090.0i 0.485292i 0.970115 + 0.242646i \(0.0780153\pi\)
−0.970115 + 0.242646i \(0.921985\pi\)
\(854\) 0 0
\(855\) −14800.0 −0.591988
\(856\) 0 0
\(857\) 470.000 0.0187338 0.00936692 0.999956i \(-0.497018\pi\)
0.00936692 + 0.999956i \(0.497018\pi\)
\(858\) 0 0
\(859\) 24440.0i 0.970759i 0.874304 + 0.485380i \(0.161319\pi\)
−0.874304 + 0.485380i \(0.838681\pi\)
\(860\) 0 0
\(861\) 52480.0i 2.07725i
\(862\) 0 0
\(863\) 22592.0 0.891125 0.445562 0.895251i \(-0.353004\pi\)
0.445562 + 0.895251i \(0.353004\pi\)
\(864\) 0 0
\(865\) −7500.00 −0.294807
\(866\) 0 0
\(867\) 32104.0i 1.25757i
\(868\) 0 0
\(869\) − 44800.0i − 1.74883i
\(870\) 0 0
\(871\) −38800.0 −1.50940
\(872\) 0 0
\(873\) 4070.00 0.157788
\(874\) 0 0
\(875\) 24000.0i 0.927255i
\(876\) 0 0
\(877\) − 17330.0i − 0.667266i −0.942703 0.333633i \(-0.891725\pi\)
0.942703 0.333633i \(-0.108275\pi\)
\(878\) 0 0
\(879\) −16560.0 −0.635444
\(880\) 0 0
\(881\) −31470.0 −1.20346 −0.601732 0.798698i \(-0.705522\pi\)
−0.601732 + 0.798698i \(0.705522\pi\)
\(882\) 0 0
\(883\) 3352.00i 0.127751i 0.997958 + 0.0638753i \(0.0203460\pi\)
−0.997958 + 0.0638753i \(0.979654\pi\)
\(884\) 0 0
\(885\) − 16000.0i − 0.607722i
\(886\) 0 0
\(887\) −48144.0 −1.82245 −0.911227 0.411904i \(-0.864864\pi\)
−0.911227 + 0.411904i \(0.864864\pi\)
\(888\) 0 0
\(889\) 16384.0 0.618112
\(890\) 0 0
\(891\) 14360.0i 0.539931i
\(892\) 0 0
\(893\) − 16640.0i − 0.623557i
\(894\) 0 0
\(895\) 22800.0 0.851531
\(896\) 0 0
\(897\) −19200.0 −0.714682
\(898\) 0 0
\(899\) 10880.0i 0.403636i
\(900\) 0 0
\(901\) − 12300.0i − 0.454797i
\(902\) 0 0
\(903\) 19456.0 0.717005
\(904\) 0 0
\(905\) −4420.00 −0.162349
\(906\) 0 0
\(907\) 16216.0i 0.593653i 0.954931 + 0.296827i \(0.0959283\pi\)
−0.954931 + 0.296827i \(0.904072\pi\)
\(908\) 0 0
\(909\) − 40626.0i − 1.48238i
\(910\) 0 0
\(911\) −49440.0 −1.79805 −0.899023 0.437901i \(-0.855722\pi\)
−0.899023 + 0.437901i \(0.855722\pi\)
\(912\) 0 0
\(913\) −22080.0 −0.800374
\(914\) 0 0
\(915\) 2400.00i 0.0867121i
\(916\) 0 0
\(917\) − 18560.0i − 0.668381i
\(918\) 0 0
\(919\) −16080.0 −0.577182 −0.288591 0.957452i \(-0.593187\pi\)
−0.288591 + 0.957452i \(0.593187\pi\)
\(920\) 0 0
\(921\) −15168.0 −0.542674
\(922\) 0 0
\(923\) − 20000.0i − 0.713226i
\(924\) 0 0
\(925\) − 7750.00i − 0.275479i
\(926\) 0 0
\(927\) 1776.00 0.0629250
\(928\) 0 0
\(929\) −11310.0 −0.399428 −0.199714 0.979854i \(-0.564001\pi\)
−0.199714 + 0.979854i \(0.564001\pi\)
\(930\) 0 0
\(931\) 3480.00i 0.122505i
\(932\) 0 0
\(933\) 13440.0i 0.471603i
\(934\) 0 0
\(935\) −12000.0 −0.419724
\(936\) 0 0
\(937\) −25130.0 −0.876159 −0.438080 0.898936i \(-0.644341\pi\)
−0.438080 + 0.898936i \(0.644341\pi\)
\(938\) 0 0
\(939\) 7760.00i 0.269689i
\(940\) 0 0
\(941\) − 22322.0i − 0.773301i −0.922226 0.386651i \(-0.873632\pi\)
0.922226 0.386651i \(-0.126368\pi\)
\(942\) 0 0
\(943\) −19680.0 −0.679607
\(944\) 0 0
\(945\) −12800.0 −0.440618
\(946\) 0 0
\(947\) − 36456.0i − 1.25096i −0.780239 0.625481i \(-0.784903\pi\)
0.780239 0.625481i \(-0.215097\pi\)
\(948\) 0 0
\(949\) − 31500.0i − 1.07749i
\(950\) 0 0
\(951\) 57840.0 1.97223
\(952\) 0 0
\(953\) −40650.0 −1.38172 −0.690862 0.722987i \(-0.742769\pi\)
−0.690862 + 0.722987i \(0.742769\pi\)
\(954\) 0 0
\(955\) 19200.0i 0.650573i
\(956\) 0 0
\(957\) 10880.0i 0.367503i
\(958\) 0 0
\(959\) −9120.00 −0.307091
\(960\) 0 0
\(961\) 72609.0 2.43728
\(962\) 0 0
\(963\) − 24568.0i − 0.822111i
\(964\) 0 0
\(965\) − 50700.0i − 1.69129i
\(966\) 0 0
\(967\) 34704.0 1.15409 0.577045 0.816712i \(-0.304206\pi\)
0.577045 + 0.816712i \(0.304206\pi\)
\(968\) 0 0
\(969\) 9600.00 0.318263
\(970\) 0 0
\(971\) − 30760.0i − 1.01662i −0.861175 0.508309i \(-0.830271\pi\)
0.861175 0.508309i \(-0.169729\pi\)
\(972\) 0 0
\(973\) − 31360.0i − 1.03325i
\(974\) 0 0
\(975\) −10000.0 −0.328468
\(976\) 0 0
\(977\) −38110.0 −1.24795 −0.623975 0.781444i \(-0.714483\pi\)
−0.623975 + 0.781444i \(0.714483\pi\)
\(978\) 0 0
\(979\) − 13040.0i − 0.425700i
\(980\) 0 0
\(981\) 13690.0i 0.445554i
\(982\) 0 0
\(983\) 19632.0 0.636992 0.318496 0.947924i \(-0.396822\pi\)
0.318496 + 0.947924i \(0.396822\pi\)
\(984\) 0 0
\(985\) 19100.0 0.617844
\(986\) 0 0
\(987\) − 53248.0i − 1.71723i
\(988\) 0 0
\(989\) 7296.00i 0.234580i
\(990\) 0 0
\(991\) 47680.0 1.52836 0.764180 0.645003i \(-0.223144\pi\)
0.764180 + 0.645003i \(0.223144\pi\)
\(992\) 0 0
\(993\) −46400.0 −1.48284
\(994\) 0 0
\(995\) 29600.0i 0.943099i
\(996\) 0 0
\(997\) 39690.0i 1.26078i 0.776280 + 0.630389i \(0.217104\pi\)
−0.776280 + 0.630389i \(0.782896\pi\)
\(998\) 0 0
\(999\) 24800.0 0.785423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.b.e.129.1 2
4.3 odd 2 256.4.b.c.129.2 2
8.3 odd 2 256.4.b.c.129.1 2
8.5 even 2 inner 256.4.b.e.129.2 2
16.3 odd 4 64.4.a.a.1.1 1
16.5 even 4 32.4.a.a.1.1 1
16.11 odd 4 32.4.a.c.1.1 yes 1
16.13 even 4 64.4.a.e.1.1 1
48.5 odd 4 288.4.a.h.1.1 1
48.11 even 4 288.4.a.i.1.1 1
48.29 odd 4 576.4.a.g.1.1 1
48.35 even 4 576.4.a.h.1.1 1
80.19 odd 4 1600.4.a.bw.1.1 1
80.27 even 4 800.4.c.a.449.1 2
80.29 even 4 1600.4.a.e.1.1 1
80.37 odd 4 800.4.c.b.449.2 2
80.43 even 4 800.4.c.a.449.2 2
80.53 odd 4 800.4.c.b.449.1 2
80.59 odd 4 800.4.a.a.1.1 1
80.69 even 4 800.4.a.k.1.1 1
112.27 even 4 1568.4.a.c.1.1 1
112.69 odd 4 1568.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.4.a.a.1.1 1 16.5 even 4
32.4.a.c.1.1 yes 1 16.11 odd 4
64.4.a.a.1.1 1 16.3 odd 4
64.4.a.e.1.1 1 16.13 even 4
256.4.b.c.129.1 2 8.3 odd 2
256.4.b.c.129.2 2 4.3 odd 2
256.4.b.e.129.1 2 1.1 even 1 trivial
256.4.b.e.129.2 2 8.5 even 2 inner
288.4.a.h.1.1 1 48.5 odd 4
288.4.a.i.1.1 1 48.11 even 4
576.4.a.g.1.1 1 48.29 odd 4
576.4.a.h.1.1 1 48.35 even 4
800.4.a.a.1.1 1 80.59 odd 4
800.4.a.k.1.1 1 80.69 even 4
800.4.c.a.449.1 2 80.27 even 4
800.4.c.a.449.2 2 80.43 even 4
800.4.c.b.449.1 2 80.53 odd 4
800.4.c.b.449.2 2 80.37 odd 4
1568.4.a.c.1.1 1 112.27 even 4
1568.4.a.o.1.1 1 112.69 odd 4
1600.4.a.e.1.1 1 80.29 even 4
1600.4.a.bw.1.1 1 80.19 odd 4