Properties

Label 256.4.b.c.129.1
Level $256$
Weight $4$
Character 256.129
Analytic conductor $15.104$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.4.b.c.129.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{3} -10.0000i q^{5} -16.0000 q^{7} -37.0000 q^{9} +O(q^{10})\) \(q-8.00000i q^{3} -10.0000i q^{5} -16.0000 q^{7} -37.0000 q^{9} -40.0000i q^{11} +50.0000i q^{13} -80.0000 q^{15} -30.0000 q^{17} -40.0000i q^{19} +128.000i q^{21} -48.0000 q^{23} +25.0000 q^{25} +80.0000i q^{27} +34.0000i q^{29} +320.000 q^{31} -320.000 q^{33} +160.000i q^{35} +310.000i q^{37} +400.000 q^{39} -410.000 q^{41} +152.000i q^{43} +370.000i q^{45} -416.000 q^{47} -87.0000 q^{49} +240.000i q^{51} -410.000i q^{53} -400.000 q^{55} -320.000 q^{57} -200.000i q^{59} -30.0000i q^{61} +592.000 q^{63} +500.000 q^{65} -776.000i q^{67} +384.000i q^{69} -400.000 q^{71} +630.000 q^{73} -200.000i q^{75} +640.000i q^{77} -1120.00 q^{79} -359.000 q^{81} -552.000i q^{83} +300.000i q^{85} +272.000 q^{87} +326.000 q^{89} -800.000i q^{91} -2560.00i q^{93} -400.000 q^{95} -110.000 q^{97} +1480.00i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{7} - 74 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{7} - 74 q^{9} - 160 q^{15} - 60 q^{17} - 96 q^{23} + 50 q^{25} + 640 q^{31} - 640 q^{33} + 800 q^{39} - 820 q^{41} - 832 q^{47} - 174 q^{49} - 800 q^{55} - 640 q^{57} + 1184 q^{63} + 1000 q^{65} - 800 q^{71} + 1260 q^{73} - 2240 q^{79} - 718 q^{81} + 544 q^{87} + 652 q^{89} - 800 q^{95} - 220 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 8.00000i − 1.53960i −0.638285 0.769800i \(-0.720356\pi\)
0.638285 0.769800i \(-0.279644\pi\)
\(4\) 0 0
\(5\) − 10.0000i − 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) −16.0000 −0.863919 −0.431959 0.901893i \(-0.642178\pi\)
−0.431959 + 0.901893i \(0.642178\pi\)
\(8\) 0 0
\(9\) −37.0000 −1.37037
\(10\) 0 0
\(11\) − 40.0000i − 1.09640i −0.836346 0.548202i \(-0.815312\pi\)
0.836346 0.548202i \(-0.184688\pi\)
\(12\) 0 0
\(13\) 50.0000i 1.06673i 0.845885 + 0.533366i \(0.179073\pi\)
−0.845885 + 0.533366i \(0.820927\pi\)
\(14\) 0 0
\(15\) −80.0000 −1.37706
\(16\) 0 0
\(17\) −30.0000 −0.428004 −0.214002 0.976833i \(-0.568650\pi\)
−0.214002 + 0.976833i \(0.568650\pi\)
\(18\) 0 0
\(19\) − 40.0000i − 0.482980i −0.970403 0.241490i \(-0.922364\pi\)
0.970403 0.241490i \(-0.0776362\pi\)
\(20\) 0 0
\(21\) 128.000i 1.33009i
\(22\) 0 0
\(23\) −48.0000 −0.435161 −0.217580 0.976042i \(-0.569816\pi\)
−0.217580 + 0.976042i \(0.569816\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 80.0000i 0.570222i
\(28\) 0 0
\(29\) 34.0000i 0.217712i 0.994058 + 0.108856i \(0.0347187\pi\)
−0.994058 + 0.108856i \(0.965281\pi\)
\(30\) 0 0
\(31\) 320.000 1.85399 0.926995 0.375073i \(-0.122383\pi\)
0.926995 + 0.375073i \(0.122383\pi\)
\(32\) 0 0
\(33\) −320.000 −1.68803
\(34\) 0 0
\(35\) 160.000i 0.772712i
\(36\) 0 0
\(37\) 310.000i 1.37740i 0.725048 + 0.688698i \(0.241818\pi\)
−0.725048 + 0.688698i \(0.758182\pi\)
\(38\) 0 0
\(39\) 400.000 1.64234
\(40\) 0 0
\(41\) −410.000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 152.000i 0.539065i 0.962991 + 0.269532i \(0.0868691\pi\)
−0.962991 + 0.269532i \(0.913131\pi\)
\(44\) 0 0
\(45\) 370.000i 1.22570i
\(46\) 0 0
\(47\) −416.000 −1.29106 −0.645530 0.763735i \(-0.723364\pi\)
−0.645530 + 0.763735i \(0.723364\pi\)
\(48\) 0 0
\(49\) −87.0000 −0.253644
\(50\) 0 0
\(51\) 240.000i 0.658955i
\(52\) 0 0
\(53\) − 410.000i − 1.06260i −0.847184 0.531300i \(-0.821704\pi\)
0.847184 0.531300i \(-0.178296\pi\)
\(54\) 0 0
\(55\) −400.000 −0.980654
\(56\) 0 0
\(57\) −320.000 −0.743597
\(58\) 0 0
\(59\) − 200.000i − 0.441318i −0.975351 0.220659i \(-0.929179\pi\)
0.975351 0.220659i \(-0.0708208\pi\)
\(60\) 0 0
\(61\) − 30.0000i − 0.0629690i −0.999504 0.0314845i \(-0.989977\pi\)
0.999504 0.0314845i \(-0.0100235\pi\)
\(62\) 0 0
\(63\) 592.000 1.18389
\(64\) 0 0
\(65\) 500.000 0.954113
\(66\) 0 0
\(67\) − 776.000i − 1.41498i −0.706725 0.707489i \(-0.749828\pi\)
0.706725 0.707489i \(-0.250172\pi\)
\(68\) 0 0
\(69\) 384.000i 0.669973i
\(70\) 0 0
\(71\) −400.000 −0.668609 −0.334305 0.942465i \(-0.608501\pi\)
−0.334305 + 0.942465i \(0.608501\pi\)
\(72\) 0 0
\(73\) 630.000 1.01008 0.505041 0.863096i \(-0.331478\pi\)
0.505041 + 0.863096i \(0.331478\pi\)
\(74\) 0 0
\(75\) − 200.000i − 0.307920i
\(76\) 0 0
\(77\) 640.000i 0.947205i
\(78\) 0 0
\(79\) −1120.00 −1.59506 −0.797531 0.603278i \(-0.793861\pi\)
−0.797531 + 0.603278i \(0.793861\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) − 552.000i − 0.729998i −0.931008 0.364999i \(-0.881069\pi\)
0.931008 0.364999i \(-0.118931\pi\)
\(84\) 0 0
\(85\) 300.000i 0.382818i
\(86\) 0 0
\(87\) 272.000 0.335189
\(88\) 0 0
\(89\) 326.000 0.388269 0.194134 0.980975i \(-0.437810\pi\)
0.194134 + 0.980975i \(0.437810\pi\)
\(90\) 0 0
\(91\) − 800.000i − 0.921569i
\(92\) 0 0
\(93\) − 2560.00i − 2.85440i
\(94\) 0 0
\(95\) −400.000 −0.431991
\(96\) 0 0
\(97\) −110.000 −0.115142 −0.0575712 0.998341i \(-0.518336\pi\)
−0.0575712 + 0.998341i \(0.518336\pi\)
\(98\) 0 0
\(99\) 1480.00i 1.50248i
\(100\) 0 0
\(101\) − 1098.00i − 1.08173i −0.841108 0.540867i \(-0.818096\pi\)
0.841108 0.540867i \(-0.181904\pi\)
\(102\) 0 0
\(103\) 48.0000 0.0459183 0.0229591 0.999736i \(-0.492691\pi\)
0.0229591 + 0.999736i \(0.492691\pi\)
\(104\) 0 0
\(105\) 1280.00 1.18967
\(106\) 0 0
\(107\) 664.000i 0.599919i 0.953952 + 0.299959i \(0.0969731\pi\)
−0.953952 + 0.299959i \(0.903027\pi\)
\(108\) 0 0
\(109\) 370.000i 0.325134i 0.986698 + 0.162567i \(0.0519773\pi\)
−0.986698 + 0.162567i \(0.948023\pi\)
\(110\) 0 0
\(111\) 2480.00 2.12064
\(112\) 0 0
\(113\) 1490.00 1.24042 0.620210 0.784436i \(-0.287047\pi\)
0.620210 + 0.784436i \(0.287047\pi\)
\(114\) 0 0
\(115\) 480.000i 0.389219i
\(116\) 0 0
\(117\) − 1850.00i − 1.46182i
\(118\) 0 0
\(119\) 480.000 0.369761
\(120\) 0 0
\(121\) −269.000 −0.202104
\(122\) 0 0
\(123\) 3280.00i 2.40445i
\(124\) 0 0
\(125\) − 1500.00i − 1.07331i
\(126\) 0 0
\(127\) −1024.00 −0.715475 −0.357737 0.933822i \(-0.616452\pi\)
−0.357737 + 0.933822i \(0.616452\pi\)
\(128\) 0 0
\(129\) 1216.00 0.829944
\(130\) 0 0
\(131\) − 1160.00i − 0.773662i −0.922151 0.386831i \(-0.873570\pi\)
0.922151 0.386831i \(-0.126430\pi\)
\(132\) 0 0
\(133\) 640.000i 0.417256i
\(134\) 0 0
\(135\) 800.000 0.510022
\(136\) 0 0
\(137\) −570.000 −0.355463 −0.177731 0.984079i \(-0.556876\pi\)
−0.177731 + 0.984079i \(0.556876\pi\)
\(138\) 0 0
\(139\) − 1960.00i − 1.19601i −0.801493 0.598004i \(-0.795961\pi\)
0.801493 0.598004i \(-0.204039\pi\)
\(140\) 0 0
\(141\) 3328.00i 1.98772i
\(142\) 0 0
\(143\) 2000.00 1.16957
\(144\) 0 0
\(145\) 340.000 0.194727
\(146\) 0 0
\(147\) 696.000i 0.390511i
\(148\) 0 0
\(149\) − 2010.00i − 1.10514i −0.833467 0.552569i \(-0.813648\pi\)
0.833467 0.552569i \(-0.186352\pi\)
\(150\) 0 0
\(151\) 720.000 0.388032 0.194016 0.980998i \(-0.437849\pi\)
0.194016 + 0.980998i \(0.437849\pi\)
\(152\) 0 0
\(153\) 1110.00 0.586524
\(154\) 0 0
\(155\) − 3200.00i − 1.65826i
\(156\) 0 0
\(157\) − 1790.00i − 0.909921i −0.890512 0.454960i \(-0.849653\pi\)
0.890512 0.454960i \(-0.150347\pi\)
\(158\) 0 0
\(159\) −3280.00 −1.63598
\(160\) 0 0
\(161\) 768.000 0.375943
\(162\) 0 0
\(163\) 1208.00i 0.580478i 0.956954 + 0.290239i \(0.0937348\pi\)
−0.956954 + 0.290239i \(0.906265\pi\)
\(164\) 0 0
\(165\) 3200.00i 1.50982i
\(166\) 0 0
\(167\) −2896.00 −1.34191 −0.670956 0.741497i \(-0.734116\pi\)
−0.670956 + 0.741497i \(0.734116\pi\)
\(168\) 0 0
\(169\) −303.000 −0.137915
\(170\) 0 0
\(171\) 1480.00i 0.661862i
\(172\) 0 0
\(173\) − 750.000i − 0.329604i −0.986327 0.164802i \(-0.947302\pi\)
0.986327 0.164802i \(-0.0526985\pi\)
\(174\) 0 0
\(175\) −400.000 −0.172784
\(176\) 0 0
\(177\) −1600.00 −0.679454
\(178\) 0 0
\(179\) − 2280.00i − 0.952040i −0.879434 0.476020i \(-0.842079\pi\)
0.879434 0.476020i \(-0.157921\pi\)
\(180\) 0 0
\(181\) − 442.000i − 0.181512i −0.995873 0.0907558i \(-0.971072\pi\)
0.995873 0.0907558i \(-0.0289283\pi\)
\(182\) 0 0
\(183\) −240.000 −0.0969471
\(184\) 0 0
\(185\) 3100.00 1.23198
\(186\) 0 0
\(187\) 1200.00i 0.469266i
\(188\) 0 0
\(189\) − 1280.00i − 0.492626i
\(190\) 0 0
\(191\) −1920.00 −0.727363 −0.363681 0.931523i \(-0.618480\pi\)
−0.363681 + 0.931523i \(0.618480\pi\)
\(192\) 0 0
\(193\) −5070.00 −1.89091 −0.945457 0.325746i \(-0.894385\pi\)
−0.945457 + 0.325746i \(0.894385\pi\)
\(194\) 0 0
\(195\) − 4000.00i − 1.46895i
\(196\) 0 0
\(197\) 1910.00i 0.690771i 0.938461 + 0.345385i \(0.112252\pi\)
−0.938461 + 0.345385i \(0.887748\pi\)
\(198\) 0 0
\(199\) −2960.00 −1.05442 −0.527208 0.849736i \(-0.676761\pi\)
−0.527208 + 0.849736i \(0.676761\pi\)
\(200\) 0 0
\(201\) −6208.00 −2.17850
\(202\) 0 0
\(203\) − 544.000i − 0.188085i
\(204\) 0 0
\(205\) 4100.00i 1.39686i
\(206\) 0 0
\(207\) 1776.00 0.596331
\(208\) 0 0
\(209\) −1600.00 −0.529542
\(210\) 0 0
\(211\) − 40.0000i − 0.0130508i −0.999979 0.00652539i \(-0.997923\pi\)
0.999979 0.00652539i \(-0.00207711\pi\)
\(212\) 0 0
\(213\) 3200.00i 1.02939i
\(214\) 0 0
\(215\) 1520.00 0.482154
\(216\) 0 0
\(217\) −5120.00 −1.60170
\(218\) 0 0
\(219\) − 5040.00i − 1.55512i
\(220\) 0 0
\(221\) − 1500.00i − 0.456565i
\(222\) 0 0
\(223\) 4288.00 1.28765 0.643824 0.765173i \(-0.277347\pi\)
0.643824 + 0.765173i \(0.277347\pi\)
\(224\) 0 0
\(225\) −925.000 −0.274074
\(226\) 0 0
\(227\) 6456.00i 1.88766i 0.330425 + 0.943832i \(0.392808\pi\)
−0.330425 + 0.943832i \(0.607192\pi\)
\(228\) 0 0
\(229\) − 1066.00i − 0.307613i −0.988101 0.153806i \(-0.950847\pi\)
0.988101 0.153806i \(-0.0491532\pi\)
\(230\) 0 0
\(231\) 5120.00 1.45832
\(232\) 0 0
\(233\) 5910.00 1.66170 0.830852 0.556494i \(-0.187854\pi\)
0.830852 + 0.556494i \(0.187854\pi\)
\(234\) 0 0
\(235\) 4160.00i 1.15476i
\(236\) 0 0
\(237\) 8960.00i 2.45576i
\(238\) 0 0
\(239\) −3360.00 −0.909374 −0.454687 0.890651i \(-0.650249\pi\)
−0.454687 + 0.890651i \(0.650249\pi\)
\(240\) 0 0
\(241\) 3970.00 1.06112 0.530561 0.847647i \(-0.321981\pi\)
0.530561 + 0.847647i \(0.321981\pi\)
\(242\) 0 0
\(243\) 5032.00i 1.32841i
\(244\) 0 0
\(245\) 870.000i 0.226866i
\(246\) 0 0
\(247\) 2000.00 0.515210
\(248\) 0 0
\(249\) −4416.00 −1.12391
\(250\) 0 0
\(251\) 6840.00i 1.72007i 0.510237 + 0.860034i \(0.329558\pi\)
−0.510237 + 0.860034i \(0.670442\pi\)
\(252\) 0 0
\(253\) 1920.00i 0.477112i
\(254\) 0 0
\(255\) 2400.00 0.589388
\(256\) 0 0
\(257\) 4610.00 1.11893 0.559463 0.828855i \(-0.311007\pi\)
0.559463 + 0.828855i \(0.311007\pi\)
\(258\) 0 0
\(259\) − 4960.00i − 1.18996i
\(260\) 0 0
\(261\) − 1258.00i − 0.298346i
\(262\) 0 0
\(263\) 4848.00 1.13666 0.568328 0.822802i \(-0.307591\pi\)
0.568328 + 0.822802i \(0.307591\pi\)
\(264\) 0 0
\(265\) −4100.00 −0.950419
\(266\) 0 0
\(267\) − 2608.00i − 0.597779i
\(268\) 0 0
\(269\) − 5550.00i − 1.25795i −0.777424 0.628977i \(-0.783474\pi\)
0.777424 0.628977i \(-0.216526\pi\)
\(270\) 0 0
\(271\) −480.000 −0.107594 −0.0537969 0.998552i \(-0.517132\pi\)
−0.0537969 + 0.998552i \(0.517132\pi\)
\(272\) 0 0
\(273\) −6400.00 −1.41885
\(274\) 0 0
\(275\) − 1000.00i − 0.219281i
\(276\) 0 0
\(277\) 1030.00i 0.223418i 0.993741 + 0.111709i \(0.0356324\pi\)
−0.993741 + 0.111709i \(0.964368\pi\)
\(278\) 0 0
\(279\) −11840.0 −2.54065
\(280\) 0 0
\(281\) 3270.00 0.694206 0.347103 0.937827i \(-0.387165\pi\)
0.347103 + 0.937827i \(0.387165\pi\)
\(282\) 0 0
\(283\) 2168.00i 0.455386i 0.973733 + 0.227693i \(0.0731183\pi\)
−0.973733 + 0.227693i \(0.926882\pi\)
\(284\) 0 0
\(285\) 3200.00i 0.665093i
\(286\) 0 0
\(287\) 6560.00 1.34921
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) 880.000i 0.177273i
\(292\) 0 0
\(293\) 2070.00i 0.412733i 0.978475 + 0.206366i \(0.0661639\pi\)
−0.978475 + 0.206366i \(0.933836\pi\)
\(294\) 0 0
\(295\) −2000.00 −0.394727
\(296\) 0 0
\(297\) 3200.00 0.625195
\(298\) 0 0
\(299\) − 2400.00i − 0.464199i
\(300\) 0 0
\(301\) − 2432.00i − 0.465708i
\(302\) 0 0
\(303\) −8784.00 −1.66544
\(304\) 0 0
\(305\) −300.000 −0.0563211
\(306\) 0 0
\(307\) − 1896.00i − 0.352477i −0.984347 0.176238i \(-0.943607\pi\)
0.984347 0.176238i \(-0.0563930\pi\)
\(308\) 0 0
\(309\) − 384.000i − 0.0706958i
\(310\) 0 0
\(311\) 1680.00 0.306315 0.153158 0.988202i \(-0.451056\pi\)
0.153158 + 0.988202i \(0.451056\pi\)
\(312\) 0 0
\(313\) −970.000 −0.175168 −0.0875841 0.996157i \(-0.527915\pi\)
−0.0875841 + 0.996157i \(0.527915\pi\)
\(314\) 0 0
\(315\) − 5920.00i − 1.05890i
\(316\) 0 0
\(317\) − 7230.00i − 1.28100i −0.767958 0.640500i \(-0.778727\pi\)
0.767958 0.640500i \(-0.221273\pi\)
\(318\) 0 0
\(319\) 1360.00 0.238700
\(320\) 0 0
\(321\) 5312.00 0.923635
\(322\) 0 0
\(323\) 1200.00i 0.206718i
\(324\) 0 0
\(325\) 1250.00i 0.213346i
\(326\) 0 0
\(327\) 2960.00 0.500576
\(328\) 0 0
\(329\) 6656.00 1.11537
\(330\) 0 0
\(331\) − 5800.00i − 0.963132i −0.876410 0.481566i \(-0.840068\pi\)
0.876410 0.481566i \(-0.159932\pi\)
\(332\) 0 0
\(333\) − 11470.0i − 1.88754i
\(334\) 0 0
\(335\) −7760.00 −1.26559
\(336\) 0 0
\(337\) −1870.00 −0.302271 −0.151136 0.988513i \(-0.548293\pi\)
−0.151136 + 0.988513i \(0.548293\pi\)
\(338\) 0 0
\(339\) − 11920.0i − 1.90975i
\(340\) 0 0
\(341\) − 12800.0i − 2.03272i
\(342\) 0 0
\(343\) 6880.00 1.08305
\(344\) 0 0
\(345\) 3840.00 0.599242
\(346\) 0 0
\(347\) 376.000i 0.0581693i 0.999577 + 0.0290846i \(0.00925923\pi\)
−0.999577 + 0.0290846i \(0.990741\pi\)
\(348\) 0 0
\(349\) 7586.00i 1.16352i 0.813360 + 0.581761i \(0.197636\pi\)
−0.813360 + 0.581761i \(0.802364\pi\)
\(350\) 0 0
\(351\) −4000.00 −0.608274
\(352\) 0 0
\(353\) 2530.00 0.381468 0.190734 0.981642i \(-0.438913\pi\)
0.190734 + 0.981642i \(0.438913\pi\)
\(354\) 0 0
\(355\) 4000.00i 0.598022i
\(356\) 0 0
\(357\) − 3840.00i − 0.569284i
\(358\) 0 0
\(359\) −9680.00 −1.42309 −0.711547 0.702638i \(-0.752005\pi\)
−0.711547 + 0.702638i \(0.752005\pi\)
\(360\) 0 0
\(361\) 5259.00 0.766730
\(362\) 0 0
\(363\) 2152.00i 0.311159i
\(364\) 0 0
\(365\) − 6300.00i − 0.903444i
\(366\) 0 0
\(367\) 2784.00 0.395977 0.197989 0.980204i \(-0.436559\pi\)
0.197989 + 0.980204i \(0.436559\pi\)
\(368\) 0 0
\(369\) 15170.0 2.14016
\(370\) 0 0
\(371\) 6560.00i 0.918001i
\(372\) 0 0
\(373\) 7910.00i 1.09803i 0.835813 + 0.549014i \(0.184997\pi\)
−0.835813 + 0.549014i \(0.815003\pi\)
\(374\) 0 0
\(375\) −12000.0 −1.65247
\(376\) 0 0
\(377\) −1700.00 −0.232240
\(378\) 0 0
\(379\) 1720.00i 0.233115i 0.993184 + 0.116557i \(0.0371859\pi\)
−0.993184 + 0.116557i \(0.962814\pi\)
\(380\) 0 0
\(381\) 8192.00i 1.10155i
\(382\) 0 0
\(383\) 11008.0 1.46862 0.734311 0.678813i \(-0.237505\pi\)
0.734311 + 0.678813i \(0.237505\pi\)
\(384\) 0 0
\(385\) 6400.00 0.847206
\(386\) 0 0
\(387\) − 5624.00i − 0.738718i
\(388\) 0 0
\(389\) − 12330.0i − 1.60708i −0.595248 0.803542i \(-0.702946\pi\)
0.595248 0.803542i \(-0.297054\pi\)
\(390\) 0 0
\(391\) 1440.00 0.186250
\(392\) 0 0
\(393\) −9280.00 −1.19113
\(394\) 0 0
\(395\) 11200.0i 1.42667i
\(396\) 0 0
\(397\) 4370.00i 0.552453i 0.961093 + 0.276227i \(0.0890841\pi\)
−0.961093 + 0.276227i \(0.910916\pi\)
\(398\) 0 0
\(399\) 5120.00 0.642408
\(400\) 0 0
\(401\) 3298.00 0.410709 0.205354 0.978688i \(-0.434165\pi\)
0.205354 + 0.978688i \(0.434165\pi\)
\(402\) 0 0
\(403\) 16000.0i 1.97771i
\(404\) 0 0
\(405\) 3590.00i 0.440466i
\(406\) 0 0
\(407\) 12400.0 1.51018
\(408\) 0 0
\(409\) 9110.00 1.10137 0.550685 0.834713i \(-0.314366\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(410\) 0 0
\(411\) 4560.00i 0.547271i
\(412\) 0 0
\(413\) 3200.00i 0.381263i
\(414\) 0 0
\(415\) −5520.00 −0.652930
\(416\) 0 0
\(417\) −15680.0 −1.84137
\(418\) 0 0
\(419\) − 7880.00i − 0.918767i −0.888238 0.459383i \(-0.848070\pi\)
0.888238 0.459383i \(-0.151930\pi\)
\(420\) 0 0
\(421\) − 5290.00i − 0.612396i −0.951968 0.306198i \(-0.900943\pi\)
0.951968 0.306198i \(-0.0990570\pi\)
\(422\) 0 0
\(423\) 15392.0 1.76923
\(424\) 0 0
\(425\) −750.000 −0.0856008
\(426\) 0 0
\(427\) 480.000i 0.0544001i
\(428\) 0 0
\(429\) − 16000.0i − 1.80067i
\(430\) 0 0
\(431\) 13920.0 1.55569 0.777845 0.628456i \(-0.216313\pi\)
0.777845 + 0.628456i \(0.216313\pi\)
\(432\) 0 0
\(433\) 4930.00 0.547161 0.273580 0.961849i \(-0.411792\pi\)
0.273580 + 0.961849i \(0.411792\pi\)
\(434\) 0 0
\(435\) − 2720.00i − 0.299802i
\(436\) 0 0
\(437\) 1920.00i 0.210174i
\(438\) 0 0
\(439\) 10640.0 1.15676 0.578382 0.815766i \(-0.303684\pi\)
0.578382 + 0.815766i \(0.303684\pi\)
\(440\) 0 0
\(441\) 3219.00 0.347587
\(442\) 0 0
\(443\) − 9288.00i − 0.996131i −0.867139 0.498066i \(-0.834044\pi\)
0.867139 0.498066i \(-0.165956\pi\)
\(444\) 0 0
\(445\) − 3260.00i − 0.347278i
\(446\) 0 0
\(447\) −16080.0 −1.70147
\(448\) 0 0
\(449\) 12850.0 1.35062 0.675311 0.737533i \(-0.264010\pi\)
0.675311 + 0.737533i \(0.264010\pi\)
\(450\) 0 0
\(451\) 16400.0i 1.71230i
\(452\) 0 0
\(453\) − 5760.00i − 0.597414i
\(454\) 0 0
\(455\) −8000.00 −0.824276
\(456\) 0 0
\(457\) −10490.0 −1.07375 −0.536873 0.843663i \(-0.680394\pi\)
−0.536873 + 0.843663i \(0.680394\pi\)
\(458\) 0 0
\(459\) − 2400.00i − 0.244058i
\(460\) 0 0
\(461\) − 11118.0i − 1.12325i −0.827393 0.561624i \(-0.810177\pi\)
0.827393 0.561624i \(-0.189823\pi\)
\(462\) 0 0
\(463\) 5792.00 0.581376 0.290688 0.956818i \(-0.406116\pi\)
0.290688 + 0.956818i \(0.406116\pi\)
\(464\) 0 0
\(465\) −25600.0 −2.55306
\(466\) 0 0
\(467\) − 2216.00i − 0.219581i −0.993955 0.109790i \(-0.964982\pi\)
0.993955 0.109790i \(-0.0350180\pi\)
\(468\) 0 0
\(469\) 12416.0i 1.22243i
\(470\) 0 0
\(471\) −14320.0 −1.40091
\(472\) 0 0
\(473\) 6080.00 0.591033
\(474\) 0 0
\(475\) − 1000.00i − 0.0965961i
\(476\) 0 0
\(477\) 15170.0i 1.45616i
\(478\) 0 0
\(479\) −10560.0 −1.00730 −0.503652 0.863907i \(-0.668011\pi\)
−0.503652 + 0.863907i \(0.668011\pi\)
\(480\) 0 0
\(481\) −15500.0 −1.46931
\(482\) 0 0
\(483\) − 6144.00i − 0.578803i
\(484\) 0 0
\(485\) 1100.00i 0.102986i
\(486\) 0 0
\(487\) −13264.0 −1.23419 −0.617094 0.786890i \(-0.711690\pi\)
−0.617094 + 0.786890i \(0.711690\pi\)
\(488\) 0 0
\(489\) 9664.00 0.893704
\(490\) 0 0
\(491\) − 4840.00i − 0.444860i −0.974949 0.222430i \(-0.928601\pi\)
0.974949 0.222430i \(-0.0713988\pi\)
\(492\) 0 0
\(493\) − 1020.00i − 0.0931815i
\(494\) 0 0
\(495\) 14800.0 1.34386
\(496\) 0 0
\(497\) 6400.00 0.577624
\(498\) 0 0
\(499\) − 19560.0i − 1.75476i −0.479795 0.877381i \(-0.659289\pi\)
0.479795 0.877381i \(-0.340711\pi\)
\(500\) 0 0
\(501\) 23168.0i 2.06601i
\(502\) 0 0
\(503\) 528.000 0.0468039 0.0234019 0.999726i \(-0.492550\pi\)
0.0234019 + 0.999726i \(0.492550\pi\)
\(504\) 0 0
\(505\) −10980.0 −0.967532
\(506\) 0 0
\(507\) 2424.00i 0.212335i
\(508\) 0 0
\(509\) 19554.0i 1.70278i 0.524532 + 0.851391i \(0.324240\pi\)
−0.524532 + 0.851391i \(0.675760\pi\)
\(510\) 0 0
\(511\) −10080.0 −0.872628
\(512\) 0 0
\(513\) 3200.00 0.275406
\(514\) 0 0
\(515\) − 480.000i − 0.0410705i
\(516\) 0 0
\(517\) 16640.0i 1.41552i
\(518\) 0 0
\(519\) −6000.00 −0.507458
\(520\) 0 0
\(521\) −15162.0 −1.27497 −0.637485 0.770463i \(-0.720025\pi\)
−0.637485 + 0.770463i \(0.720025\pi\)
\(522\) 0 0
\(523\) 10968.0i 0.917012i 0.888691 + 0.458506i \(0.151615\pi\)
−0.888691 + 0.458506i \(0.848385\pi\)
\(524\) 0 0
\(525\) 3200.00i 0.266018i
\(526\) 0 0
\(527\) −9600.00 −0.793515
\(528\) 0 0
\(529\) −9863.00 −0.810635
\(530\) 0 0
\(531\) 7400.00i 0.604770i
\(532\) 0 0
\(533\) − 20500.0i − 1.66595i
\(534\) 0 0
\(535\) 6640.00 0.536584
\(536\) 0 0
\(537\) −18240.0 −1.46576
\(538\) 0 0
\(539\) 3480.00i 0.278097i
\(540\) 0 0
\(541\) 6722.00i 0.534198i 0.963669 + 0.267099i \(0.0860651\pi\)
−0.963669 + 0.267099i \(0.913935\pi\)
\(542\) 0 0
\(543\) −3536.00 −0.279455
\(544\) 0 0
\(545\) 3700.00 0.290808
\(546\) 0 0
\(547\) − 20424.0i − 1.59647i −0.602348 0.798233i \(-0.705768\pi\)
0.602348 0.798233i \(-0.294232\pi\)
\(548\) 0 0
\(549\) 1110.00i 0.0862908i
\(550\) 0 0
\(551\) 1360.00 0.105151
\(552\) 0 0
\(553\) 17920.0 1.37800
\(554\) 0 0
\(555\) − 24800.0i − 1.89676i
\(556\) 0 0
\(557\) 6610.00i 0.502827i 0.967880 + 0.251414i \(0.0808954\pi\)
−0.967880 + 0.251414i \(0.919105\pi\)
\(558\) 0 0
\(559\) −7600.00 −0.575037
\(560\) 0 0
\(561\) 9600.00 0.722482
\(562\) 0 0
\(563\) 2712.00i 0.203015i 0.994835 + 0.101507i \(0.0323665\pi\)
−0.994835 + 0.101507i \(0.967633\pi\)
\(564\) 0 0
\(565\) − 14900.0i − 1.10946i
\(566\) 0 0
\(567\) 5744.00 0.425441
\(568\) 0 0
\(569\) −3530.00 −0.260080 −0.130040 0.991509i \(-0.541511\pi\)
−0.130040 + 0.991509i \(0.541511\pi\)
\(570\) 0 0
\(571\) − 13640.0i − 0.999678i −0.866118 0.499839i \(-0.833392\pi\)
0.866118 0.499839i \(-0.166608\pi\)
\(572\) 0 0
\(573\) 15360.0i 1.11985i
\(574\) 0 0
\(575\) −1200.00 −0.0870321
\(576\) 0 0
\(577\) −6270.00 −0.452380 −0.226190 0.974083i \(-0.572627\pi\)
−0.226190 + 0.974083i \(0.572627\pi\)
\(578\) 0 0
\(579\) 40560.0i 2.91125i
\(580\) 0 0
\(581\) 8832.00i 0.630659i
\(582\) 0 0
\(583\) −16400.0 −1.16504
\(584\) 0 0
\(585\) −18500.0 −1.30749
\(586\) 0 0
\(587\) − 8616.00i − 0.605827i −0.953018 0.302913i \(-0.902041\pi\)
0.953018 0.302913i \(-0.0979593\pi\)
\(588\) 0 0
\(589\) − 12800.0i − 0.895441i
\(590\) 0 0
\(591\) 15280.0 1.06351
\(592\) 0 0
\(593\) 5490.00 0.380181 0.190090 0.981767i \(-0.439122\pi\)
0.190090 + 0.981767i \(0.439122\pi\)
\(594\) 0 0
\(595\) − 4800.00i − 0.330724i
\(596\) 0 0
\(597\) 23680.0i 1.62338i
\(598\) 0 0
\(599\) 15440.0 1.05319 0.526595 0.850116i \(-0.323468\pi\)
0.526595 + 0.850116i \(0.323468\pi\)
\(600\) 0 0
\(601\) −8890.00 −0.603379 −0.301689 0.953406i \(-0.597551\pi\)
−0.301689 + 0.953406i \(0.597551\pi\)
\(602\) 0 0
\(603\) 28712.0i 1.93904i
\(604\) 0 0
\(605\) 2690.00i 0.180767i
\(606\) 0 0
\(607\) 23744.0 1.58771 0.793854 0.608108i \(-0.208071\pi\)
0.793854 + 0.608108i \(0.208071\pi\)
\(608\) 0 0
\(609\) −4352.00 −0.289576
\(610\) 0 0
\(611\) − 20800.0i − 1.37721i
\(612\) 0 0
\(613\) − 15210.0i − 1.00216i −0.865400 0.501082i \(-0.832936\pi\)
0.865400 0.501082i \(-0.167064\pi\)
\(614\) 0 0
\(615\) 32800.0 2.15061
\(616\) 0 0
\(617\) 12630.0 0.824092 0.412046 0.911163i \(-0.364814\pi\)
0.412046 + 0.911163i \(0.364814\pi\)
\(618\) 0 0
\(619\) 11160.0i 0.724650i 0.932052 + 0.362325i \(0.118017\pi\)
−0.932052 + 0.362325i \(0.881983\pi\)
\(620\) 0 0
\(621\) − 3840.00i − 0.248138i
\(622\) 0 0
\(623\) −5216.00 −0.335433
\(624\) 0 0
\(625\) −11875.0 −0.760000
\(626\) 0 0
\(627\) 12800.0i 0.815284i
\(628\) 0 0
\(629\) − 9300.00i − 0.589531i
\(630\) 0 0
\(631\) −13040.0 −0.822685 −0.411342 0.911481i \(-0.634940\pi\)
−0.411342 + 0.911481i \(0.634940\pi\)
\(632\) 0 0
\(633\) −320.000 −0.0200930
\(634\) 0 0
\(635\) 10240.0i 0.639940i
\(636\) 0 0
\(637\) − 4350.00i − 0.270570i
\(638\) 0 0
\(639\) 14800.0 0.916242
\(640\) 0 0
\(641\) −16910.0 −1.04197 −0.520987 0.853565i \(-0.674436\pi\)
−0.520987 + 0.853565i \(0.674436\pi\)
\(642\) 0 0
\(643\) − 4488.00i − 0.275256i −0.990484 0.137628i \(-0.956052\pi\)
0.990484 0.137628i \(-0.0439478\pi\)
\(644\) 0 0
\(645\) − 12160.0i − 0.742325i
\(646\) 0 0
\(647\) −2064.00 −0.125416 −0.0627080 0.998032i \(-0.519974\pi\)
−0.0627080 + 0.998032i \(0.519974\pi\)
\(648\) 0 0
\(649\) −8000.00 −0.483864
\(650\) 0 0
\(651\) 40960.0i 2.46597i
\(652\) 0 0
\(653\) − 4270.00i − 0.255893i −0.991781 0.127946i \(-0.959161\pi\)
0.991781 0.127946i \(-0.0408386\pi\)
\(654\) 0 0
\(655\) −11600.0 −0.691984
\(656\) 0 0
\(657\) −23310.0 −1.38419
\(658\) 0 0
\(659\) 19800.0i 1.17041i 0.810886 + 0.585204i \(0.198985\pi\)
−0.810886 + 0.585204i \(0.801015\pi\)
\(660\) 0 0
\(661\) 27110.0i 1.59524i 0.603157 + 0.797622i \(0.293909\pi\)
−0.603157 + 0.797622i \(0.706091\pi\)
\(662\) 0 0
\(663\) −12000.0 −0.702928
\(664\) 0 0
\(665\) 6400.00 0.373205
\(666\) 0 0
\(667\) − 1632.00i − 0.0947396i
\(668\) 0 0
\(669\) − 34304.0i − 1.98247i
\(670\) 0 0
\(671\) −1200.00 −0.0690395
\(672\) 0 0
\(673\) 32210.0 1.84488 0.922440 0.386140i \(-0.126192\pi\)
0.922440 + 0.386140i \(0.126192\pi\)
\(674\) 0 0
\(675\) 2000.00i 0.114044i
\(676\) 0 0
\(677\) 27190.0i 1.54357i 0.635884 + 0.771785i \(0.280636\pi\)
−0.635884 + 0.771785i \(0.719364\pi\)
\(678\) 0 0
\(679\) 1760.00 0.0994736
\(680\) 0 0
\(681\) 51648.0 2.90625
\(682\) 0 0
\(683\) − 20328.0i − 1.13884i −0.822046 0.569421i \(-0.807167\pi\)
0.822046 0.569421i \(-0.192833\pi\)
\(684\) 0 0
\(685\) 5700.00i 0.317935i
\(686\) 0 0
\(687\) −8528.00 −0.473600
\(688\) 0 0
\(689\) 20500.0 1.13351
\(690\) 0 0
\(691\) − 12520.0i − 0.689267i −0.938737 0.344633i \(-0.888003\pi\)
0.938737 0.344633i \(-0.111997\pi\)
\(692\) 0 0
\(693\) − 23680.0i − 1.29802i
\(694\) 0 0
\(695\) −19600.0 −1.06974
\(696\) 0 0
\(697\) 12300.0 0.668430
\(698\) 0 0
\(699\) − 47280.0i − 2.55836i
\(700\) 0 0
\(701\) − 11550.0i − 0.622307i −0.950360 0.311154i \(-0.899285\pi\)
0.950360 0.311154i \(-0.100715\pi\)
\(702\) 0 0
\(703\) 12400.0 0.665256
\(704\) 0 0
\(705\) 33280.0 1.77787
\(706\) 0 0
\(707\) 17568.0i 0.934530i
\(708\) 0 0
\(709\) − 34154.0i − 1.80914i −0.426325 0.904570i \(-0.640192\pi\)
0.426325 0.904570i \(-0.359808\pi\)
\(710\) 0 0
\(711\) 41440.0 2.18582
\(712\) 0 0
\(713\) −15360.0 −0.806783
\(714\) 0 0
\(715\) − 20000.0i − 1.04609i
\(716\) 0 0
\(717\) 26880.0i 1.40007i
\(718\) 0 0
\(719\) −22880.0 −1.18676 −0.593380 0.804923i \(-0.702207\pi\)
−0.593380 + 0.804923i \(0.702207\pi\)
\(720\) 0 0
\(721\) −768.000 −0.0396696
\(722\) 0 0
\(723\) − 31760.0i − 1.63370i
\(724\) 0 0
\(725\) 850.000i 0.0435424i
\(726\) 0 0
\(727\) −10416.0 −0.531373 −0.265686 0.964060i \(-0.585599\pi\)
−0.265686 + 0.964060i \(0.585599\pi\)
\(728\) 0 0
\(729\) 30563.0 1.55276
\(730\) 0 0
\(731\) − 4560.00i − 0.230722i
\(732\) 0 0
\(733\) − 14750.0i − 0.743252i −0.928383 0.371626i \(-0.878800\pi\)
0.928383 0.371626i \(-0.121200\pi\)
\(734\) 0 0
\(735\) 6960.00 0.349284
\(736\) 0 0
\(737\) −31040.0 −1.55139
\(738\) 0 0
\(739\) 2360.00i 0.117475i 0.998273 + 0.0587375i \(0.0187075\pi\)
−0.998273 + 0.0587375i \(0.981293\pi\)
\(740\) 0 0
\(741\) − 16000.0i − 0.793218i
\(742\) 0 0
\(743\) −32208.0 −1.59031 −0.795153 0.606409i \(-0.792609\pi\)
−0.795153 + 0.606409i \(0.792609\pi\)
\(744\) 0 0
\(745\) −20100.0 −0.988466
\(746\) 0 0
\(747\) 20424.0i 1.00037i
\(748\) 0 0
\(749\) − 10624.0i − 0.518281i
\(750\) 0 0
\(751\) −36640.0 −1.78031 −0.890155 0.455658i \(-0.849404\pi\)
−0.890155 + 0.455658i \(0.849404\pi\)
\(752\) 0 0
\(753\) 54720.0 2.64822
\(754\) 0 0
\(755\) − 7200.00i − 0.347066i
\(756\) 0 0
\(757\) − 12090.0i − 0.580474i −0.956955 0.290237i \(-0.906266\pi\)
0.956955 0.290237i \(-0.0937341\pi\)
\(758\) 0 0
\(759\) 15360.0 0.734562
\(760\) 0 0
\(761\) 3318.00 0.158052 0.0790259 0.996873i \(-0.474819\pi\)
0.0790259 + 0.996873i \(0.474819\pi\)
\(762\) 0 0
\(763\) − 5920.00i − 0.280889i
\(764\) 0 0
\(765\) − 11100.0i − 0.524603i
\(766\) 0 0
\(767\) 10000.0 0.470768
\(768\) 0 0
\(769\) 11506.0 0.539554 0.269777 0.962923i \(-0.413050\pi\)
0.269777 + 0.962923i \(0.413050\pi\)
\(770\) 0 0
\(771\) − 36880.0i − 1.72270i
\(772\) 0 0
\(773\) 22230.0i 1.03436i 0.855878 + 0.517178i \(0.173018\pi\)
−0.855878 + 0.517178i \(0.826982\pi\)
\(774\) 0 0
\(775\) 8000.00 0.370798
\(776\) 0 0
\(777\) −39680.0 −1.83206
\(778\) 0 0
\(779\) 16400.0i 0.754289i
\(780\) 0 0
\(781\) 16000.0i 0.733067i
\(782\) 0 0
\(783\) −2720.00 −0.124144
\(784\) 0 0
\(785\) −17900.0 −0.813858
\(786\) 0 0
\(787\) 21336.0i 0.966387i 0.875514 + 0.483193i \(0.160523\pi\)
−0.875514 + 0.483193i \(0.839477\pi\)
\(788\) 0 0
\(789\) − 38784.0i − 1.75000i
\(790\) 0 0
\(791\) −23840.0 −1.07162
\(792\) 0 0
\(793\) 1500.00 0.0671709
\(794\) 0 0
\(795\) 32800.0i 1.46327i
\(796\) 0 0
\(797\) 7170.00i 0.318663i 0.987225 + 0.159332i \(0.0509339\pi\)
−0.987225 + 0.159332i \(0.949066\pi\)
\(798\) 0 0
\(799\) 12480.0 0.552579
\(800\) 0 0
\(801\) −12062.0 −0.532072
\(802\) 0 0
\(803\) − 25200.0i − 1.10746i
\(804\) 0 0
\(805\) − 7680.00i − 0.336254i
\(806\) 0 0
\(807\) −44400.0 −1.93675
\(808\) 0 0
\(809\) 23654.0 1.02797 0.513987 0.857798i \(-0.328168\pi\)
0.513987 + 0.857798i \(0.328168\pi\)
\(810\) 0 0
\(811\) − 30440.0i − 1.31799i −0.752146 0.658997i \(-0.770981\pi\)
0.752146 0.658997i \(-0.229019\pi\)
\(812\) 0 0
\(813\) 3840.00i 0.165652i
\(814\) 0 0
\(815\) 12080.0 0.519195
\(816\) 0 0
\(817\) 6080.00 0.260358
\(818\) 0 0
\(819\) 29600.0i 1.26289i
\(820\) 0 0
\(821\) − 19930.0i − 0.847213i −0.905846 0.423606i \(-0.860764\pi\)
0.905846 0.423606i \(-0.139236\pi\)
\(822\) 0 0
\(823\) 9872.00 0.418124 0.209062 0.977902i \(-0.432959\pi\)
0.209062 + 0.977902i \(0.432959\pi\)
\(824\) 0 0
\(825\) −8000.00 −0.337605
\(826\) 0 0
\(827\) − 5704.00i − 0.239840i −0.992784 0.119920i \(-0.961736\pi\)
0.992784 0.119920i \(-0.0382638\pi\)
\(828\) 0 0
\(829\) − 27230.0i − 1.14082i −0.821361 0.570408i \(-0.806785\pi\)
0.821361 0.570408i \(-0.193215\pi\)
\(830\) 0 0
\(831\) 8240.00 0.343974
\(832\) 0 0
\(833\) 2610.00 0.108561
\(834\) 0 0
\(835\) 28960.0i 1.20024i
\(836\) 0 0
\(837\) 25600.0i 1.05719i
\(838\) 0 0
\(839\) 18800.0 0.773597 0.386799 0.922164i \(-0.373581\pi\)
0.386799 + 0.922164i \(0.373581\pi\)
\(840\) 0 0
\(841\) 23233.0 0.952602
\(842\) 0 0
\(843\) − 26160.0i − 1.06880i
\(844\) 0 0
\(845\) 3030.00i 0.123355i
\(846\) 0 0
\(847\) 4304.00 0.174601
\(848\) 0 0
\(849\) 17344.0 0.701113
\(850\) 0 0
\(851\) − 14880.0i − 0.599389i
\(852\) 0 0
\(853\) − 12090.0i − 0.485292i −0.970115 0.242646i \(-0.921985\pi\)
0.970115 0.242646i \(-0.0780153\pi\)
\(854\) 0 0
\(855\) 14800.0 0.591988
\(856\) 0 0
\(857\) 470.000 0.0187338 0.00936692 0.999956i \(-0.497018\pi\)
0.00936692 + 0.999956i \(0.497018\pi\)
\(858\) 0 0
\(859\) 24440.0i 0.970759i 0.874304 + 0.485380i \(0.161319\pi\)
−0.874304 + 0.485380i \(0.838681\pi\)
\(860\) 0 0
\(861\) − 52480.0i − 2.07725i
\(862\) 0 0
\(863\) −22592.0 −0.891125 −0.445562 0.895251i \(-0.646996\pi\)
−0.445562 + 0.895251i \(0.646996\pi\)
\(864\) 0 0
\(865\) −7500.00 −0.294807
\(866\) 0 0
\(867\) 32104.0i 1.25757i
\(868\) 0 0
\(869\) 44800.0i 1.74883i
\(870\) 0 0
\(871\) 38800.0 1.50940
\(872\) 0 0
\(873\) 4070.00 0.157788
\(874\) 0 0
\(875\) 24000.0i 0.927255i
\(876\) 0 0
\(877\) 17330.0i 0.667266i 0.942703 + 0.333633i \(0.108275\pi\)
−0.942703 + 0.333633i \(0.891725\pi\)
\(878\) 0 0
\(879\) 16560.0 0.635444
\(880\) 0 0
\(881\) −31470.0 −1.20346 −0.601732 0.798698i \(-0.705522\pi\)
−0.601732 + 0.798698i \(0.705522\pi\)
\(882\) 0 0
\(883\) 3352.00i 0.127751i 0.997958 + 0.0638753i \(0.0203460\pi\)
−0.997958 + 0.0638753i \(0.979654\pi\)
\(884\) 0 0
\(885\) 16000.0i 0.607722i
\(886\) 0 0
\(887\) 48144.0 1.82245 0.911227 0.411904i \(-0.135136\pi\)
0.911227 + 0.411904i \(0.135136\pi\)
\(888\) 0 0
\(889\) 16384.0 0.618112
\(890\) 0 0
\(891\) 14360.0i 0.539931i
\(892\) 0 0
\(893\) 16640.0i 0.623557i
\(894\) 0 0
\(895\) −22800.0 −0.851531
\(896\) 0 0
\(897\) −19200.0 −0.714682
\(898\) 0 0
\(899\) 10880.0i 0.403636i
\(900\) 0 0
\(901\) 12300.0i 0.454797i
\(902\) 0 0
\(903\) −19456.0 −0.717005
\(904\) 0 0
\(905\) −4420.00 −0.162349
\(906\) 0 0
\(907\) 16216.0i 0.593653i 0.954931 + 0.296827i \(0.0959283\pi\)
−0.954931 + 0.296827i \(0.904072\pi\)
\(908\) 0 0
\(909\) 40626.0i 1.48238i
\(910\) 0 0
\(911\) 49440.0 1.79805 0.899023 0.437901i \(-0.144278\pi\)
0.899023 + 0.437901i \(0.144278\pi\)
\(912\) 0 0
\(913\) −22080.0 −0.800374
\(914\) 0 0
\(915\) 2400.00i 0.0867121i
\(916\) 0 0
\(917\) 18560.0i 0.668381i
\(918\) 0 0
\(919\) 16080.0 0.577182 0.288591 0.957452i \(-0.406813\pi\)
0.288591 + 0.957452i \(0.406813\pi\)
\(920\) 0 0
\(921\) −15168.0 −0.542674
\(922\) 0 0
\(923\) − 20000.0i − 0.713226i
\(924\) 0 0
\(925\) 7750.00i 0.275479i
\(926\) 0 0
\(927\) −1776.00 −0.0629250
\(928\) 0 0
\(929\) −11310.0 −0.399428 −0.199714 0.979854i \(-0.564001\pi\)
−0.199714 + 0.979854i \(0.564001\pi\)
\(930\) 0 0
\(931\) 3480.00i 0.122505i
\(932\) 0 0
\(933\) − 13440.0i − 0.471603i
\(934\) 0 0
\(935\) 12000.0 0.419724
\(936\) 0 0
\(937\) −25130.0 −0.876159 −0.438080 0.898936i \(-0.644341\pi\)
−0.438080 + 0.898936i \(0.644341\pi\)
\(938\) 0 0
\(939\) 7760.00i 0.269689i
\(940\) 0 0
\(941\) 22322.0i 0.773301i 0.922226 + 0.386651i \(0.126368\pi\)
−0.922226 + 0.386651i \(0.873632\pi\)
\(942\) 0 0
\(943\) 19680.0 0.679607
\(944\) 0 0
\(945\) −12800.0 −0.440618
\(946\) 0 0
\(947\) − 36456.0i − 1.25096i −0.780239 0.625481i \(-0.784903\pi\)
0.780239 0.625481i \(-0.215097\pi\)
\(948\) 0 0
\(949\) 31500.0i 1.07749i
\(950\) 0 0
\(951\) −57840.0 −1.97223
\(952\) 0 0
\(953\) −40650.0 −1.38172 −0.690862 0.722987i \(-0.742769\pi\)
−0.690862 + 0.722987i \(0.742769\pi\)
\(954\) 0 0
\(955\) 19200.0i 0.650573i
\(956\) 0 0
\(957\) − 10880.0i − 0.367503i
\(958\) 0 0
\(959\) 9120.00 0.307091
\(960\) 0 0
\(961\) 72609.0 2.43728
\(962\) 0 0
\(963\) − 24568.0i − 0.822111i
\(964\) 0 0
\(965\) 50700.0i 1.69129i
\(966\) 0 0
\(967\) −34704.0 −1.15409 −0.577045 0.816712i \(-0.695794\pi\)
−0.577045 + 0.816712i \(0.695794\pi\)
\(968\) 0 0
\(969\) 9600.00 0.318263
\(970\) 0 0
\(971\) − 30760.0i − 1.01662i −0.861175 0.508309i \(-0.830271\pi\)
0.861175 0.508309i \(-0.169729\pi\)
\(972\) 0 0
\(973\) 31360.0i 1.03325i
\(974\) 0 0
\(975\) 10000.0 0.328468
\(976\) 0 0
\(977\) −38110.0 −1.24795 −0.623975 0.781444i \(-0.714483\pi\)
−0.623975 + 0.781444i \(0.714483\pi\)
\(978\) 0 0
\(979\) − 13040.0i − 0.425700i
\(980\) 0 0
\(981\) − 13690.0i − 0.445554i
\(982\) 0 0
\(983\) −19632.0 −0.636992 −0.318496 0.947924i \(-0.603178\pi\)
−0.318496 + 0.947924i \(0.603178\pi\)
\(984\) 0 0
\(985\) 19100.0 0.617844
\(986\) 0 0
\(987\) − 53248.0i − 1.71723i
\(988\) 0 0
\(989\) − 7296.00i − 0.234580i
\(990\) 0 0
\(991\) −47680.0 −1.52836 −0.764180 0.645003i \(-0.776856\pi\)
−0.764180 + 0.645003i \(0.776856\pi\)
\(992\) 0 0
\(993\) −46400.0 −1.48284
\(994\) 0 0
\(995\) 29600.0i 0.943099i
\(996\) 0 0
\(997\) − 39690.0i − 1.26078i −0.776280 0.630389i \(-0.782896\pi\)
0.776280 0.630389i \(-0.217104\pi\)
\(998\) 0 0
\(999\) −24800.0 −0.785423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.b.c.129.1 2
4.3 odd 2 256.4.b.e.129.2 2
8.3 odd 2 256.4.b.e.129.1 2
8.5 even 2 inner 256.4.b.c.129.2 2
16.3 odd 4 32.4.a.a.1.1 1
16.5 even 4 64.4.a.a.1.1 1
16.11 odd 4 64.4.a.e.1.1 1
16.13 even 4 32.4.a.c.1.1 yes 1
48.5 odd 4 576.4.a.h.1.1 1
48.11 even 4 576.4.a.g.1.1 1
48.29 odd 4 288.4.a.i.1.1 1
48.35 even 4 288.4.a.h.1.1 1
80.3 even 4 800.4.c.b.449.1 2
80.13 odd 4 800.4.c.a.449.2 2
80.19 odd 4 800.4.a.k.1.1 1
80.29 even 4 800.4.a.a.1.1 1
80.59 odd 4 1600.4.a.e.1.1 1
80.67 even 4 800.4.c.b.449.2 2
80.69 even 4 1600.4.a.bw.1.1 1
80.77 odd 4 800.4.c.a.449.1 2
112.13 odd 4 1568.4.a.c.1.1 1
112.83 even 4 1568.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.4.a.a.1.1 1 16.3 odd 4
32.4.a.c.1.1 yes 1 16.13 even 4
64.4.a.a.1.1 1 16.5 even 4
64.4.a.e.1.1 1 16.11 odd 4
256.4.b.c.129.1 2 1.1 even 1 trivial
256.4.b.c.129.2 2 8.5 even 2 inner
256.4.b.e.129.1 2 8.3 odd 2
256.4.b.e.129.2 2 4.3 odd 2
288.4.a.h.1.1 1 48.35 even 4
288.4.a.i.1.1 1 48.29 odd 4
576.4.a.g.1.1 1 48.11 even 4
576.4.a.h.1.1 1 48.5 odd 4
800.4.a.a.1.1 1 80.29 even 4
800.4.a.k.1.1 1 80.19 odd 4
800.4.c.a.449.1 2 80.77 odd 4
800.4.c.a.449.2 2 80.13 odd 4
800.4.c.b.449.1 2 80.3 even 4
800.4.c.b.449.2 2 80.67 even 4
1568.4.a.c.1.1 1 112.13 odd 4
1568.4.a.o.1.1 1 112.83 even 4
1600.4.a.e.1.1 1 80.59 odd 4
1600.4.a.bw.1.1 1 80.69 even 4