Properties

Label 256.4.b.b
Level $256$
Weight $4$
Character orbit 256.b
Analytic conductor $15.104$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - 3 \beta q^{5} - 20 q^{7} + 23 q^{9} - 7 \beta q^{11} + 27 \beta q^{13} + 12 q^{15} - 66 q^{17} + 81 \beta q^{19} - 20 \beta q^{21} - 172 q^{23} + 89 q^{25} + 50 \beta q^{27} - \beta q^{29} + \cdots - 161 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 40 q^{7} + 46 q^{9} + 24 q^{15} - 132 q^{17} - 344 q^{23} + 178 q^{25} - 256 q^{31} + 56 q^{33} - 216 q^{39} - 404 q^{41} - 816 q^{47} + 114 q^{49} - 168 q^{55} - 648 q^{57} - 920 q^{63} + 648 q^{65}+ \cdots - 2244 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
1.00000i
1.00000i
0 2.00000i 0 6.00000i 0 −20.0000 0 23.0000 0
129.2 0 2.00000i 0 6.00000i 0 −20.0000 0 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.4.b.b 2
4.b odd 2 1 256.4.b.f 2
8.b even 2 1 inner 256.4.b.b 2
8.d odd 2 1 256.4.b.f 2
16.e even 4 1 128.4.a.a 1
16.e even 4 1 128.4.a.d yes 1
16.f odd 4 1 128.4.a.b yes 1
16.f odd 4 1 128.4.a.c yes 1
48.i odd 4 1 1152.4.a.d 1
48.i odd 4 1 1152.4.a.j 1
48.k even 4 1 1152.4.a.c 1
48.k even 4 1 1152.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.4.a.a 1 16.e even 4 1
128.4.a.b yes 1 16.f odd 4 1
128.4.a.c yes 1 16.f odd 4 1
128.4.a.d yes 1 16.e even 4 1
256.4.b.b 2 1.a even 1 1 trivial
256.4.b.b 2 8.b even 2 1 inner
256.4.b.f 2 4.b odd 2 1
256.4.b.f 2 8.d odd 2 1
1152.4.a.c 1 48.k even 4 1
1152.4.a.d 1 48.i odd 4 1
1152.4.a.i 1 48.k even 4 1
1152.4.a.j 1 48.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(256, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} + 36 \) Copy content Toggle raw display
$7$ \( (T + 20)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 196 \) Copy content Toggle raw display
$13$ \( T^{2} + 2916 \) Copy content Toggle raw display
$17$ \( (T + 66)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 26244 \) Copy content Toggle raw display
$23$ \( (T + 172)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( (T + 128)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 24964 \) Copy content Toggle raw display
$41$ \( (T + 202)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 88804 \) Copy content Toggle raw display
$47$ \( (T + 408)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 476100 \) Copy content Toggle raw display
$59$ \( T^{2} + 103684 \) Copy content Toggle raw display
$61$ \( T^{2} + 88804 \) Copy content Toggle raw display
$67$ \( T^{2} + 40804 \) Copy content Toggle raw display
$71$ \( (T - 700)^{2} \) Copy content Toggle raw display
$73$ \( (T - 418)^{2} \) Copy content Toggle raw display
$79$ \( (T - 744)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 459684 \) Copy content Toggle raw display
$89$ \( (T - 82)^{2} \) Copy content Toggle raw display
$97$ \( (T + 1122)^{2} \) Copy content Toggle raw display
show more
show less