Properties

Label 256.4.a.n
Level $256$
Weight $4$
Character orbit 256.a
Self dual yes
Analytic conductor $15.104$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{3} q^{5} - \beta_{2} q^{7} + 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} - \beta_{3} q^{5} - \beta_{2} q^{7} + 13 q^{9} - 7 \beta_1 q^{11} - \beta_{3} q^{13} + 5 \beta_{2} q^{15} + 70 q^{17} - 13 \beta_1 q^{19} + 8 \beta_{3} q^{21} - 7 \beta_{2} q^{23} + 195 q^{25} + 14 \beta_1 q^{27} + 7 \beta_{3} q^{29} + 280 q^{33} + 64 \beta_1 q^{35} - 21 \beta_{3} q^{37} + 5 \beta_{2} q^{39} + 182 q^{41} + 21 \beta_1 q^{43} - 13 \beta_{3} q^{45} - 14 \beta_{2} q^{47} + 169 q^{49} - 70 \beta_1 q^{51} + 7 \beta_{3} q^{53} + 35 \beta_{2} q^{55} + 520 q^{57} + 13 \beta_1 q^{59} - 13 \beta_{3} q^{61} - 13 \beta_{2} q^{63} + 320 q^{65} + 35 \beta_1 q^{67} + 56 \beta_{3} q^{69} - 5 \beta_{2} q^{71} - 910 q^{73} - 195 \beta_1 q^{75} + 56 \beta_{3} q^{77} - 30 \beta_{2} q^{79} - 911 q^{81} - 113 \beta_1 q^{83} - 70 \beta_{3} q^{85} - 35 \beta_{2} q^{87} + 546 q^{89} + 64 \beta_1 q^{91} + 65 \beta_{2} q^{95} - 490 q^{97} - 91 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 52 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 52 q^{9} + 280 q^{17} + 780 q^{25} + 1120 q^{33} + 728 q^{41} + 676 q^{49} + 2080 q^{57} + 1280 q^{65} - 3640 q^{73} - 3644 q^{81} + 2184 q^{89} - 1960 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{3} + 8\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 8\nu^{3} - 32\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 8\nu^{2} - 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 8\beta_1 ) / 32 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 24 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 4\beta_1 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.28825
0.874032
−2.28825
−0.874032
0 −6.32456 0 −17.8885 0 −22.6274 0 13.0000 0
1.2 0 −6.32456 0 17.8885 0 22.6274 0 13.0000 0
1.3 0 6.32456 0 −17.8885 0 22.6274 0 13.0000 0
1.4 0 6.32456 0 17.8885 0 −22.6274 0 13.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.4.a.n 4
3.b odd 2 1 2304.4.a.bz 4
4.b odd 2 1 inner 256.4.a.n 4
8.b even 2 1 inner 256.4.a.n 4
8.d odd 2 1 inner 256.4.a.n 4
12.b even 2 1 2304.4.a.bz 4
16.e even 4 2 128.4.b.e 4
16.f odd 4 2 128.4.b.e 4
24.f even 2 1 2304.4.a.bz 4
24.h odd 2 1 2304.4.a.bz 4
48.i odd 4 2 1152.4.d.j 4
48.k even 4 2 1152.4.d.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.4.b.e 4 16.e even 4 2
128.4.b.e 4 16.f odd 4 2
256.4.a.n 4 1.a even 1 1 trivial
256.4.a.n 4 4.b odd 2 1 inner
256.4.a.n 4 8.b even 2 1 inner
256.4.a.n 4 8.d odd 2 1 inner
1152.4.d.j 4 48.i odd 4 2
1152.4.d.j 4 48.k even 4 2
2304.4.a.bz 4 3.b odd 2 1
2304.4.a.bz 4 12.b even 2 1
2304.4.a.bz 4 24.f even 2 1
2304.4.a.bz 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(256))\):

\( T_{3}^{2} - 40 \) Copy content Toggle raw display
\( T_{5}^{2} - 320 \) Copy content Toggle raw display
\( T_{7}^{2} - 512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 320)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 512)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 1960)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 320)^{2} \) Copy content Toggle raw display
$17$ \( (T - 70)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 6760)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 25088)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 15680)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 141120)^{2} \) Copy content Toggle raw display
$41$ \( (T - 182)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 17640)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 100352)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 15680)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 6760)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 54080)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 49000)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 12800)^{2} \) Copy content Toggle raw display
$73$ \( (T + 910)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 460800)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 510760)^{2} \) Copy content Toggle raw display
$89$ \( (T - 546)^{4} \) Copy content Toggle raw display
$97$ \( (T + 490)^{4} \) Copy content Toggle raw display
show more
show less