Properties

 Label 256.4.a.h.1.1 Level $256$ Weight $4$ Character 256.1 Self dual yes Analytic conductor $15.104$ Analytic rank $0$ Dimension $1$ CM discriminant -8 Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [256,4,Mod(1,256)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(256, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("256.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$256 = 2^{8}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 256.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$15.1044889615$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 64) Fricke sign: $$+1$$ Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 256.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+10.0000 q^{3} +73.0000 q^{9} +O(q^{10})$$ $$q+10.0000 q^{3} +73.0000 q^{9} -18.0000 q^{11} +90.0000 q^{17} +106.000 q^{19} -125.000 q^{25} +460.000 q^{27} -180.000 q^{33} -522.000 q^{41} -290.000 q^{43} -343.000 q^{49} +900.000 q^{51} +1060.00 q^{57} +846.000 q^{59} -70.0000 q^{67} +430.000 q^{73} -1250.00 q^{75} +2629.00 q^{81} -1350.00 q^{83} -1026.00 q^{89} -1910.00 q^{97} -1314.00 q^{99} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 10.0000 1.92450 0.962250 0.272166i $$-0.0877398\pi$$
0.962250 + 0.272166i $$0.0877398\pi$$
$$4$$ 0 0
$$5$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ 73.0000 2.70370
$$10$$ 0 0
$$11$$ −18.0000 −0.493382 −0.246691 0.969094i $$-0.579343\pi$$
−0.246691 + 0.969094i $$0.579343\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 90.0000 1.28401 0.642006 0.766700i $$-0.278102\pi$$
0.642006 + 0.766700i $$0.278102\pi$$
$$18$$ 0 0
$$19$$ 106.000 1.27990 0.639949 0.768417i $$-0.278955\pi$$
0.639949 + 0.768417i $$0.278955\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ −125.000 −1.00000
$$26$$ 0 0
$$27$$ 460.000 3.27878
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ 0 0
$$33$$ −180.000 −0.949514
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −522.000 −1.98836 −0.994179 0.107738i $$-0.965639\pi$$
−0.994179 + 0.107738i $$0.965639\pi$$
$$42$$ 0 0
$$43$$ −290.000 −1.02848 −0.514239 0.857647i $$-0.671926\pi$$
−0.514239 + 0.857647i $$0.671926\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ −343.000 −1.00000
$$50$$ 0 0
$$51$$ 900.000 2.47108
$$52$$ 0 0
$$53$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 1060.00 2.46317
$$58$$ 0 0
$$59$$ 846.000 1.86678 0.933388 0.358868i $$-0.116837\pi$$
0.933388 + 0.358868i $$0.116837\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −70.0000 −0.127640 −0.0638199 0.997961i $$-0.520328\pi$$
−0.0638199 + 0.997961i $$0.520328\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 430.000 0.689420 0.344710 0.938709i $$-0.387977\pi$$
0.344710 + 0.938709i $$0.387977\pi$$
$$74$$ 0 0
$$75$$ −1250.00 −1.92450
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 2629.00 3.60631
$$82$$ 0 0
$$83$$ −1350.00 −1.78532 −0.892661 0.450728i $$-0.851164\pi$$
−0.892661 + 0.450728i $$0.851164\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −1026.00 −1.22198 −0.610988 0.791640i $$-0.709227\pi$$
−0.610988 + 0.791640i $$0.709227\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −1910.00 −1.99929 −0.999645 0.0266459i $$-0.991517\pi$$
−0.999645 + 0.0266459i $$0.991517\pi$$
$$98$$ 0 0
$$99$$ −1314.00 −1.33396
$$100$$ 0 0
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1710.00 1.54497 0.772486 0.635032i $$-0.219013\pi$$
0.772486 + 0.635032i $$0.219013\pi$$
$$108$$ 0 0
$$109$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −270.000 −0.224774 −0.112387 0.993665i $$-0.535850\pi$$
−0.112387 + 0.993665i $$0.535850\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −1007.00 −0.756574
$$122$$ 0 0
$$123$$ −5220.00 −3.82660
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$128$$ 0 0
$$129$$ −2900.00 −1.97931
$$130$$ 0 0
$$131$$ 1242.00 0.828351 0.414176 0.910197i $$-0.364070\pi$$
0.414176 + 0.910197i $$0.364070\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −2250.00 −1.40314 −0.701571 0.712599i $$-0.747518\pi$$
−0.701571 + 0.712599i $$0.747518\pi$$
$$138$$ 0 0
$$139$$ −1474.00 −0.899446 −0.449723 0.893168i $$-0.648477\pi$$
−0.449723 + 0.893168i $$0.648477\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −3430.00 −1.92450
$$148$$ 0 0
$$149$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$152$$ 0 0
$$153$$ 6570.00 3.47159
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 970.000 0.466112 0.233056 0.972463i $$-0.425127\pi$$
0.233056 + 0.972463i $$0.425127\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −2197.00 −1.00000
$$170$$ 0 0
$$171$$ 7738.00 3.46047
$$172$$ 0 0
$$173$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 8460.00 3.59261
$$178$$ 0 0
$$179$$ 3834.00 1.60093 0.800465 0.599379i $$-0.204586\pi$$
0.800465 + 0.599379i $$0.204586\pi$$
$$180$$ 0 0
$$181$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −1620.00 −0.633509
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ 2090.00 0.779490 0.389745 0.920923i $$-0.372563\pi$$
0.389745 + 0.920923i $$0.372563\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$198$$ 0 0
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ −700.000 −0.245643
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −1908.00 −0.631479
$$210$$ 0 0
$$211$$ −6118.00 −1.99612 −0.998058 0.0622910i $$-0.980159\pi$$
−0.998058 + 0.0622910i $$0.980159\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 4300.00 1.32679
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$224$$ 0 0
$$225$$ −9125.00 −2.70370
$$226$$ 0 0
$$227$$ 6570.00 1.92100 0.960498 0.278286i $$-0.0897663\pi$$
0.960498 + 0.278286i $$0.0897663\pi$$
$$228$$ 0 0
$$229$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 6030.00 1.69544 0.847722 0.530441i $$-0.177974\pi$$
0.847722 + 0.530441i $$0.177974\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ −1222.00 −0.326622 −0.163311 0.986575i $$-0.552217\pi$$
−0.163311 + 0.986575i $$0.552217\pi$$
$$242$$ 0 0
$$243$$ 13870.0 3.66157
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ −13500.0 −3.43585
$$250$$ 0 0
$$251$$ 4302.00 1.08183 0.540916 0.841077i $$-0.318078\pi$$
0.540916 + 0.841077i $$0.318078\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −3870.00 −0.939315 −0.469658 0.882849i $$-0.655623\pi$$
−0.469658 + 0.882849i $$0.655623\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −10260.0 −2.35169
$$268$$ 0 0
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 2250.00 0.493382
$$276$$ 0 0
$$277$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 9342.00 1.98326 0.991632 0.129099i $$-0.0412086\pi$$
0.991632 + 0.129099i $$0.0412086\pi$$
$$282$$ 0 0
$$283$$ 8030.00 1.68669 0.843346 0.537371i $$-0.180582\pi$$
0.843346 + 0.537371i $$0.180582\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 3187.00 0.648687
$$290$$ 0 0
$$291$$ −19100.0 −3.84764
$$292$$ 0 0
$$293$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ −8280.00 −1.61769
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −7990.00 −1.48539 −0.742693 0.669632i $$-0.766452\pi$$
−0.742693 + 0.669632i $$0.766452\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 8390.00 1.51511 0.757557 0.652769i $$-0.226393\pi$$
0.757557 + 0.652769i $$0.226393\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 17100.0 2.97330
$$322$$ 0 0
$$323$$ 9540.00 1.64340
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −8242.00 −1.36864 −0.684322 0.729180i $$-0.739902\pi$$
−0.684322 + 0.729180i $$0.739902\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 11410.0 1.84434 0.922170 0.386786i $$-0.126415\pi$$
0.922170 + 0.386786i $$0.126415\pi$$
$$338$$ 0 0
$$339$$ −2700.00 −0.432578
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 6030.00 0.932874 0.466437 0.884554i $$-0.345537\pi$$
0.466437 + 0.884554i $$0.345537\pi$$
$$348$$ 0 0
$$349$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 4770.00 0.719211 0.359605 0.933104i $$-0.382911\pi$$
0.359605 + 0.933104i $$0.382911\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ 4377.00 0.638140
$$362$$ 0 0
$$363$$ −10070.0 −1.45603
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$368$$ 0 0
$$369$$ −38106.0 −5.37593
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −11666.0 −1.58111 −0.790557 0.612389i $$-0.790209\pi$$
−0.790557 + 0.612389i $$0.790209\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −21170.0 −2.78070
$$388$$ 0 0
$$389$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 12420.0 1.59416
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 7002.00 0.871978 0.435989 0.899952i $$-0.356399\pi$$
0.435989 + 0.899952i $$0.356399\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ −16346.0 −1.97618 −0.988090 0.153877i $$-0.950824\pi$$
−0.988090 + 0.153877i $$0.950824\pi$$
$$410$$ 0 0
$$411$$ −22500.0 −2.70035
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −14740.0 −1.73099
$$418$$ 0 0
$$419$$ 16794.0 1.95809 0.979046 0.203639i $$-0.0652769\pi$$
0.979046 + 0.203639i $$0.0652769\pi$$
$$420$$ 0 0
$$421$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −11250.0 −1.28401
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 0 0
$$433$$ −5510.00 −0.611533 −0.305766 0.952107i $$-0.598913\pi$$
−0.305766 + 0.952107i $$0.598913\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ −25039.0 −2.70370
$$442$$ 0 0
$$443$$ 18270.0 1.95944 0.979722 0.200361i $$-0.0642114\pi$$
0.979722 + 0.200361i $$0.0642114\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 17514.0 1.84084 0.920420 0.390932i $$-0.127847\pi$$
0.920420 + 0.390932i $$0.127847\pi$$
$$450$$ 0 0
$$451$$ 9396.00 0.981021
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 18070.0 1.84963 0.924813 0.380422i $$-0.124221\pi$$
0.924813 + 0.380422i $$0.124221\pi$$
$$458$$ 0 0
$$459$$ 41400.0 4.20999
$$460$$ 0 0
$$461$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$462$$ 0 0
$$463$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −15030.0 −1.48931 −0.744653 0.667452i $$-0.767385\pi$$
−0.744653 + 0.667452i $$0.767385\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 5220.00 0.507433
$$474$$ 0 0
$$475$$ −13250.0 −1.27990
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$488$$ 0 0
$$489$$ 9700.00 0.897033
$$490$$ 0 0
$$491$$ 12222.0 1.12336 0.561681 0.827354i $$-0.310155\pi$$
0.561681 + 0.827354i $$0.310155\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −18214.0 −1.63401 −0.817005 0.576631i $$-0.804367\pi$$
−0.817005 + 0.576631i $$0.804367\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −21970.0 −1.92450
$$508$$ 0 0
$$509$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 48760.0 4.19650
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −9162.00 −0.770431 −0.385215 0.922827i $$-0.625873\pi$$
−0.385215 + 0.922827i $$0.625873\pi$$
$$522$$ 0 0
$$523$$ 4750.00 0.397138 0.198569 0.980087i $$-0.436371\pi$$
0.198569 + 0.980087i $$0.436371\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −12167.0 −1.00000
$$530$$ 0 0
$$531$$ 61758.0 5.04721
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 38340.0 3.08099
$$538$$ 0 0
$$539$$ 6174.00 0.493382
$$540$$ 0 0
$$541$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 21850.0 1.70793 0.853966 0.520329i $$-0.174191\pi$$
0.853966 + 0.520329i $$0.174191\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ −16200.0 −1.21919
$$562$$ 0 0
$$563$$ −23670.0 −1.77189 −0.885943 0.463795i $$-0.846488\pi$$
−0.885943 + 0.463795i $$0.846488\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −2394.00 −0.176383 −0.0881913 0.996104i $$-0.528109\pi$$
−0.0881913 + 0.996104i $$0.528109\pi$$
$$570$$ 0 0
$$571$$ 27038.0 1.98162 0.990810 0.135261i $$-0.0431872\pi$$
0.990810 + 0.135261i $$0.0431872\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −19550.0 −1.41053 −0.705266 0.708943i $$-0.749173\pi$$
−0.705266 + 0.708943i $$0.749173\pi$$
$$578$$ 0 0
$$579$$ 20900.0 1.50013
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 10350.0 0.727752 0.363876 0.931447i $$-0.381453\pi$$
0.363876 + 0.931447i $$0.381453\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −26190.0 −1.81365 −0.906825 0.421507i $$-0.861501\pi$$
−0.906825 + 0.421507i $$0.861501\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ 14398.0 0.977216 0.488608 0.872503i $$-0.337505\pi$$
0.488608 + 0.872503i $$0.337505\pi$$
$$602$$ 0 0
$$603$$ −5110.00 −0.345100
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −28530.0 −1.86155 −0.930774 0.365596i $$-0.880865\pi$$
−0.930774 + 0.365596i $$0.880865\pi$$
$$618$$ 0 0
$$619$$ −30706.0 −1.99383 −0.996913 0.0785136i $$-0.974983\pi$$
−0.996913 + 0.0785136i $$0.974983\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 15625.0 1.00000
$$626$$ 0 0
$$627$$ −19080.0 −1.21528
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$632$$ 0 0
$$633$$ −61180.0 −3.84153
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −6678.00 −0.411490 −0.205745 0.978606i $$-0.565962\pi$$
−0.205745 + 0.978606i $$0.565962\pi$$
$$642$$ 0 0
$$643$$ −28550.0 −1.75101 −0.875507 0.483205i $$-0.839472\pi$$
−0.875507 + 0.483205i $$0.839472\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$648$$ 0 0
$$649$$ −15228.0 −0.921034
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 31390.0 1.86399
$$658$$ 0 0
$$659$$ 29754.0 1.75880 0.879402 0.476081i $$-0.157943\pi$$
0.879402 + 0.476081i $$0.157943\pi$$
$$660$$ 0 0
$$661$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −19190.0 −1.09914 −0.549569 0.835448i $$-0.685208\pi$$
−0.549569 + 0.835448i $$0.685208\pi$$
$$674$$ 0 0
$$675$$ −57500.0 −3.27878
$$676$$ 0 0
$$677$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 65700.0 3.69696
$$682$$ 0 0
$$683$$ −11970.0 −0.670599 −0.335300 0.942112i $$-0.608838\pi$$
−0.335300 + 0.942112i $$0.608838\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 1978.00 0.108895 0.0544477 0.998517i $$-0.482660\pi$$
0.0544477 + 0.998517i $$0.482660\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −46980.0 −2.55308
$$698$$ 0 0
$$699$$ 60300.0 3.26288
$$700$$ 0 0
$$701$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −12220.0 −0.628585
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$728$$ 0 0
$$729$$ 67717.0 3.44038
$$730$$ 0 0
$$731$$ −26100.0 −1.32058
$$732$$ 0 0
$$733$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 1260.00 0.0629752
$$738$$ 0 0
$$739$$ 36074.0 1.79567 0.897837 0.440327i $$-0.145138\pi$$
0.897837 + 0.440327i $$0.145138\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −98550.0 −4.82698
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$752$$ 0 0
$$753$$ 43020.0 2.08199
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 34182.0 1.62825 0.814124 0.580691i $$-0.197218\pi$$
0.814124 + 0.580691i $$0.197218\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 40106.0 1.88070 0.940351 0.340207i $$-0.110497\pi$$
0.940351 + 0.340207i $$0.110497\pi$$
$$770$$ 0 0
$$771$$ −38700.0 −1.80771
$$772$$ 0 0
$$773$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −55332.0 −2.54490
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −6950.00 −0.314791 −0.157396 0.987536i $$-0.550310\pi$$
−0.157396 + 0.987536i $$0.550310\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −74898.0 −3.30386
$$802$$ 0 0
$$803$$ −7740.00 −0.340148
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −14346.0 −0.623459 −0.311730 0.950171i $$-0.600908\pi$$
−0.311730 + 0.950171i $$0.600908\pi$$
$$810$$ 0 0
$$811$$ 37582.0 1.62723 0.813614 0.581405i $$-0.197497\pi$$
0.813614 + 0.581405i $$0.197497\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ −30740.0 −1.31635
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$822$$ 0 0
$$823$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$824$$ 0 0
$$825$$ 22500.0 0.949514
$$826$$ 0 0
$$827$$ −23490.0 −0.987699 −0.493850 0.869547i $$-0.664411\pi$$
−0.493850 + 0.869547i $$0.664411\pi$$
$$828$$ 0 0
$$829$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −30870.0 −1.28401
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ −24389.0 −1.00000
$$842$$ 0 0
$$843$$ 93420.0 3.81679
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 80300.0 3.24604
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 18630.0 0.742577 0.371289 0.928518i $$-0.378916\pi$$
0.371289 + 0.928518i $$0.378916\pi$$
$$858$$ 0 0
$$859$$ 45646.0 1.81306 0.906532 0.422138i $$-0.138720\pi$$
0.906532 + 0.422138i $$0.138720\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 31870.0 1.24840
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ −139430. −5.40549
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −41742.0 −1.59628 −0.798141 0.602471i $$-0.794183\pi$$
−0.798141 + 0.602471i $$0.794183\pi$$
$$882$$ 0 0
$$883$$ 5290.00 0.201611 0.100806 0.994906i $$-0.467858\pi$$
0.100806 + 0.994906i $$0.467858\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ −47322.0 −1.77929
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −26210.0 −0.959525 −0.479762 0.877399i $$-0.659277\pi$$
−0.479762 + 0.877399i $$0.659277\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ 24300.0 0.880846
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$920$$ 0 0
$$921$$ −79900.0 −2.85863
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −6966.00 −0.246014 −0.123007 0.992406i $$-0.539254\pi$$
−0.123007 + 0.992406i $$0.539254\pi$$
$$930$$ 0 0
$$931$$ −36358.0 −1.27990
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 56270.0 1.96186 0.980929 0.194367i $$-0.0622652\pi$$
0.980929 + 0.194367i $$0.0622652\pi$$
$$938$$ 0 0
$$939$$ 83900.0 2.91584
$$940$$ 0 0
$$941$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −58230.0 −1.99812 −0.999061 0.0433353i $$-0.986202\pi$$
−0.999061 + 0.0433353i $$0.986202\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 45990.0 1.56323 0.781617 0.623759i $$-0.214395\pi$$
0.781617 + 0.623759i $$0.214395\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −29791.0 −1.00000
$$962$$ 0 0
$$963$$ 124830. 4.17714
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$968$$ 0 0
$$969$$ 95400.0 3.16273
$$970$$ 0 0
$$971$$ −162.000 −0.00535410 −0.00267705 0.999996i $$-0.500852\pi$$
−0.00267705 + 0.999996i $$0.500852\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 17370.0 0.568798 0.284399 0.958706i $$-0.408206\pi$$
0.284399 + 0.958706i $$0.408206\pi$$
$$978$$ 0 0
$$979$$ 18468.0 0.602901
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$992$$ 0 0
$$993$$ −82420.0 −2.63396
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.a.h.1.1 1
3.2 odd 2 2304.4.a.i.1.1 1
4.3 odd 2 256.4.a.a.1.1 1
8.3 odd 2 CM 256.4.a.h.1.1 1
8.5 even 2 256.4.a.a.1.1 1
12.11 even 2 2304.4.a.h.1.1 1
16.3 odd 4 64.4.b.a.33.1 2
16.5 even 4 64.4.b.a.33.1 2
16.11 odd 4 64.4.b.a.33.2 yes 2
16.13 even 4 64.4.b.a.33.2 yes 2
24.5 odd 2 2304.4.a.h.1.1 1
24.11 even 2 2304.4.a.i.1.1 1
48.5 odd 4 576.4.d.a.289.2 2
48.11 even 4 576.4.d.a.289.1 2
48.29 odd 4 576.4.d.a.289.1 2
48.35 even 4 576.4.d.a.289.2 2

By twisted newform
Twist Min Dim Char Parity Ord Type
64.4.b.a.33.1 2 16.3 odd 4
64.4.b.a.33.1 2 16.5 even 4
64.4.b.a.33.2 yes 2 16.11 odd 4
64.4.b.a.33.2 yes 2 16.13 even 4
256.4.a.a.1.1 1 4.3 odd 2
256.4.a.a.1.1 1 8.5 even 2
256.4.a.h.1.1 1 1.1 even 1 trivial
256.4.a.h.1.1 1 8.3 odd 2 CM
576.4.d.a.289.1 2 48.11 even 4
576.4.d.a.289.1 2 48.29 odd 4
576.4.d.a.289.2 2 48.5 odd 4
576.4.d.a.289.2 2 48.35 even 4
2304.4.a.h.1.1 1 12.11 even 2
2304.4.a.h.1.1 1 24.5 odd 2
2304.4.a.i.1.1 1 3.2 odd 2
2304.4.a.i.1.1 1 24.11 even 2