Defining parameters
| Level: | \( N \) | \(=\) | \( 256 = 2^{8} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 256.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 14 \) | ||
| Sturm bound: | \(128\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(256))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 108 | 26 | 82 |
| Cusp forms | 84 | 22 | 62 |
| Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(56\) | \(14\) | \(42\) | \(44\) | \(12\) | \(32\) | \(12\) | \(2\) | \(10\) | |||
| \(-\) | \(52\) | \(12\) | \(40\) | \(40\) | \(10\) | \(30\) | \(12\) | \(2\) | \(10\) | |||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(256))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(256))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(256)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)