Defining parameters
Level: | \( N \) | \(=\) | \( 256 = 2^{8} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 256.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(256))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 10 | 34 |
Cusp forms | 21 | 6 | 15 |
Eisenstein series | 23 | 4 | 19 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(256))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
256.2.a.a | $1$ | $2.044$ | \(\Q\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-2\) | \(0\) | \(0\) | $+$ | \(q-2q^{3}+q^{9}-6q^{11}-6q^{17}-2q^{19}+\cdots\) | |
256.2.a.b | $1$ | $2.044$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(-4\) | \(0\) | $+$ | \(q-4q^{5}-3q^{9}-4q^{13}-2q^{17}+11q^{25}+\cdots\) | |
256.2.a.c | $1$ | $2.044$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(4\) | \(0\) | $-$ | \(q+4q^{5}-3q^{9}+4q^{13}-2q^{17}+11q^{25}+\cdots\) | |
256.2.a.d | $1$ | $2.044$ | \(\Q\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | \(q+2q^{3}+q^{9}+6q^{11}-6q^{17}+2q^{19}+\cdots\) | |
256.2.a.e | $2$ | $2.044$ | \(\Q(\sqrt{2}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | \(q+\beta q^{3}+5q^{9}-\beta q^{11}+6q^{17}-3\beta q^{19}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(256))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(256)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)