Properties

Label 2550.2.d.v.2449.1
Level $2550$
Weight $2$
Character 2550.2449
Analytic conductor $20.362$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(2449,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{33})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 17x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.1
Root \(-3.37228i\) of defining polynomial
Character \(\chi\) \(=\) 2550.2449
Dual form 2550.2.d.v.2449.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -3.37228i q^{7} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -3.37228i q^{7} +1.00000i q^{8} -1.00000 q^{9} -1.37228 q^{11} -1.00000i q^{12} +2.00000i q^{13} -3.37228 q^{14} +1.00000 q^{16} +1.00000i q^{17} +1.00000i q^{18} -3.37228 q^{19} +3.37228 q^{21} +1.37228i q^{22} +4.37228i q^{23} -1.00000 q^{24} +2.00000 q^{26} -1.00000i q^{27} +3.37228i q^{28} +2.74456 q^{29} -8.11684 q^{31} -1.00000i q^{32} -1.37228i q^{33} +1.00000 q^{34} +1.00000 q^{36} +1.00000i q^{37} +3.37228i q^{38} -2.00000 q^{39} +4.37228 q^{41} -3.37228i q^{42} +9.37228i q^{43} +1.37228 q^{44} +4.37228 q^{46} +7.37228i q^{47} +1.00000i q^{48} -4.37228 q^{49} -1.00000 q^{51} -2.00000i q^{52} -5.74456i q^{53} -1.00000 q^{54} +3.37228 q^{56} -3.37228i q^{57} -2.74456i q^{58} +7.11684 q^{59} +9.11684 q^{61} +8.11684i q^{62} +3.37228i q^{63} -1.00000 q^{64} -1.37228 q^{66} +5.37228i q^{67} -1.00000i q^{68} -4.37228 q^{69} +4.37228 q^{71} -1.00000i q^{72} +8.00000i q^{73} +1.00000 q^{74} +3.37228 q^{76} +4.62772i q^{77} +2.00000i q^{78} -6.11684 q^{79} +1.00000 q^{81} -4.37228i q^{82} -4.37228i q^{83} -3.37228 q^{84} +9.37228 q^{86} +2.74456i q^{87} -1.37228i q^{88} -8.74456 q^{89} +6.74456 q^{91} -4.37228i q^{92} -8.11684i q^{93} +7.37228 q^{94} +1.00000 q^{96} +1.25544i q^{97} +4.37228i q^{98} +1.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9} + 6 q^{11} - 2 q^{14} + 4 q^{16} - 2 q^{19} + 2 q^{21} - 4 q^{24} + 8 q^{26} - 12 q^{29} + 2 q^{31} + 4 q^{34} + 4 q^{36} - 8 q^{39} + 6 q^{41} - 6 q^{44} + 6 q^{46} - 6 q^{49} - 4 q^{51} - 4 q^{54} + 2 q^{56} - 6 q^{59} + 2 q^{61} - 4 q^{64} + 6 q^{66} - 6 q^{69} + 6 q^{71} + 4 q^{74} + 2 q^{76} + 10 q^{79} + 4 q^{81} - 2 q^{84} + 26 q^{86} - 12 q^{89} + 4 q^{91} + 18 q^{94} + 4 q^{96} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2550\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(851\) \(1327\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) − 3.37228i − 1.27460i −0.770615 0.637301i \(-0.780051\pi\)
0.770615 0.637301i \(-0.219949\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.37228 −0.413758 −0.206879 0.978366i \(-0.566331\pi\)
−0.206879 + 0.978366i \(0.566331\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) −3.37228 −0.901280
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) 1.00000i 0.235702i
\(19\) −3.37228 −0.773654 −0.386827 0.922152i \(-0.626429\pi\)
−0.386827 + 0.922152i \(0.626429\pi\)
\(20\) 0 0
\(21\) 3.37228 0.735892
\(22\) 1.37228i 0.292571i
\(23\) 4.37228i 0.911684i 0.890061 + 0.455842i \(0.150662\pi\)
−0.890061 + 0.455842i \(0.849338\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) − 1.00000i − 0.192450i
\(28\) 3.37228i 0.637301i
\(29\) 2.74456 0.509652 0.254826 0.966987i \(-0.417982\pi\)
0.254826 + 0.966987i \(0.417982\pi\)
\(30\) 0 0
\(31\) −8.11684 −1.45783 −0.728914 0.684605i \(-0.759975\pi\)
−0.728914 + 0.684605i \(0.759975\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 1.37228i − 0.238884i
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.00000i 0.164399i 0.996616 + 0.0821995i \(0.0261945\pi\)
−0.996616 + 0.0821995i \(0.973806\pi\)
\(38\) 3.37228i 0.547056i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 4.37228 0.682836 0.341418 0.939912i \(-0.389093\pi\)
0.341418 + 0.939912i \(0.389093\pi\)
\(42\) − 3.37228i − 0.520354i
\(43\) 9.37228i 1.42926i 0.699503 + 0.714630i \(0.253405\pi\)
−0.699503 + 0.714630i \(0.746595\pi\)
\(44\) 1.37228 0.206879
\(45\) 0 0
\(46\) 4.37228 0.644658
\(47\) 7.37228i 1.07536i 0.843150 + 0.537679i \(0.180699\pi\)
−0.843150 + 0.537679i \(0.819301\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −4.37228 −0.624612
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) − 2.00000i − 0.277350i
\(53\) − 5.74456i − 0.789076i −0.918880 0.394538i \(-0.870905\pi\)
0.918880 0.394538i \(-0.129095\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 3.37228 0.450640
\(57\) − 3.37228i − 0.446670i
\(58\) − 2.74456i − 0.360379i
\(59\) 7.11684 0.926534 0.463267 0.886219i \(-0.346677\pi\)
0.463267 + 0.886219i \(0.346677\pi\)
\(60\) 0 0
\(61\) 9.11684 1.16729 0.583646 0.812008i \(-0.301626\pi\)
0.583646 + 0.812008i \(0.301626\pi\)
\(62\) 8.11684i 1.03084i
\(63\) 3.37228i 0.424868i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.37228 −0.168916
\(67\) 5.37228i 0.656329i 0.944621 + 0.328164i \(0.106430\pi\)
−0.944621 + 0.328164i \(0.893570\pi\)
\(68\) − 1.00000i − 0.121268i
\(69\) −4.37228 −0.526361
\(70\) 0 0
\(71\) 4.37228 0.518894 0.259447 0.965757i \(-0.416460\pi\)
0.259447 + 0.965757i \(0.416460\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) 8.00000i 0.936329i 0.883641 + 0.468165i \(0.155085\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) 3.37228 0.386827
\(77\) 4.62772i 0.527377i
\(78\) 2.00000i 0.226455i
\(79\) −6.11684 −0.688199 −0.344099 0.938933i \(-0.611816\pi\)
−0.344099 + 0.938933i \(0.611816\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 4.37228i − 0.482838i
\(83\) − 4.37228i − 0.479920i −0.970783 0.239960i \(-0.922866\pi\)
0.970783 0.239960i \(-0.0771344\pi\)
\(84\) −3.37228 −0.367946
\(85\) 0 0
\(86\) 9.37228 1.01064
\(87\) 2.74456i 0.294248i
\(88\) − 1.37228i − 0.146286i
\(89\) −8.74456 −0.926922 −0.463461 0.886117i \(-0.653393\pi\)
−0.463461 + 0.886117i \(0.653393\pi\)
\(90\) 0 0
\(91\) 6.74456 0.707022
\(92\) − 4.37228i − 0.455842i
\(93\) − 8.11684i − 0.841678i
\(94\) 7.37228 0.760393
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 1.25544i 0.127470i 0.997967 + 0.0637352i \(0.0203013\pi\)
−0.997967 + 0.0637352i \(0.979699\pi\)
\(98\) 4.37228i 0.441667i
\(99\) 1.37228 0.137919
\(100\) 0 0
\(101\) −4.11684 −0.409641 −0.204821 0.978800i \(-0.565661\pi\)
−0.204821 + 0.978800i \(0.565661\pi\)
\(102\) 1.00000i 0.0990148i
\(103\) 9.62772i 0.948647i 0.880351 + 0.474324i \(0.157307\pi\)
−0.880351 + 0.474324i \(0.842693\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −5.74456 −0.557961
\(107\) 4.62772i 0.447378i 0.974661 + 0.223689i \(0.0718101\pi\)
−0.974661 + 0.223689i \(0.928190\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 8.11684 0.777453 0.388726 0.921353i \(-0.372915\pi\)
0.388726 + 0.921353i \(0.372915\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) − 3.37228i − 0.318651i
\(113\) − 0.255437i − 0.0240295i −0.999928 0.0120148i \(-0.996175\pi\)
0.999928 0.0120148i \(-0.00382451\pi\)
\(114\) −3.37228 −0.315843
\(115\) 0 0
\(116\) −2.74456 −0.254826
\(117\) − 2.00000i − 0.184900i
\(118\) − 7.11684i − 0.655159i
\(119\) 3.37228 0.309137
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) − 9.11684i − 0.825400i
\(123\) 4.37228i 0.394235i
\(124\) 8.11684 0.728914
\(125\) 0 0
\(126\) 3.37228 0.300427
\(127\) 21.4891i 1.90685i 0.301628 + 0.953426i \(0.402470\pi\)
−0.301628 + 0.953426i \(0.597530\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −9.37228 −0.825183
\(130\) 0 0
\(131\) −5.48913 −0.479587 −0.239794 0.970824i \(-0.577080\pi\)
−0.239794 + 0.970824i \(0.577080\pi\)
\(132\) 1.37228i 0.119442i
\(133\) 11.3723i 0.986102i
\(134\) 5.37228 0.464094
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 17.4891i 1.49420i 0.664713 + 0.747098i \(0.268554\pi\)
−0.664713 + 0.747098i \(0.731446\pi\)
\(138\) 4.37228i 0.372193i
\(139\) −0.883156 −0.0749083 −0.0374542 0.999298i \(-0.511925\pi\)
−0.0374542 + 0.999298i \(0.511925\pi\)
\(140\) 0 0
\(141\) −7.37228 −0.620858
\(142\) − 4.37228i − 0.366914i
\(143\) − 2.74456i − 0.229512i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 8.00000 0.662085
\(147\) − 4.37228i − 0.360620i
\(148\) − 1.00000i − 0.0821995i
\(149\) −21.8614 −1.79096 −0.895478 0.445106i \(-0.853166\pi\)
−0.895478 + 0.445106i \(0.853166\pi\)
\(150\) 0 0
\(151\) 3.11684 0.253645 0.126823 0.991925i \(-0.459522\pi\)
0.126823 + 0.991925i \(0.459522\pi\)
\(152\) − 3.37228i − 0.273528i
\(153\) − 1.00000i − 0.0808452i
\(154\) 4.62772 0.372912
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 7.25544i 0.579047i 0.957171 + 0.289523i \(0.0934968\pi\)
−0.957171 + 0.289523i \(0.906503\pi\)
\(158\) 6.11684i 0.486630i
\(159\) 5.74456 0.455573
\(160\) 0 0
\(161\) 14.7446 1.16203
\(162\) − 1.00000i − 0.0785674i
\(163\) 15.1168i 1.18404i 0.805922 + 0.592021i \(0.201670\pi\)
−0.805922 + 0.592021i \(0.798330\pi\)
\(164\) −4.37228 −0.341418
\(165\) 0 0
\(166\) −4.37228 −0.339355
\(167\) 9.25544i 0.716207i 0.933682 + 0.358104i \(0.116577\pi\)
−0.933682 + 0.358104i \(0.883423\pi\)
\(168\) 3.37228i 0.260177i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 3.37228 0.257885
\(172\) − 9.37228i − 0.714630i
\(173\) − 12.0000i − 0.912343i −0.889892 0.456172i \(-0.849220\pi\)
0.889892 0.456172i \(-0.150780\pi\)
\(174\) 2.74456 0.208065
\(175\) 0 0
\(176\) −1.37228 −0.103440
\(177\) 7.11684i 0.534935i
\(178\) 8.74456i 0.655433i
\(179\) −7.11684 −0.531938 −0.265969 0.963982i \(-0.585692\pi\)
−0.265969 + 0.963982i \(0.585692\pi\)
\(180\) 0 0
\(181\) 22.4891 1.67160 0.835802 0.549031i \(-0.185003\pi\)
0.835802 + 0.549031i \(0.185003\pi\)
\(182\) − 6.74456i − 0.499940i
\(183\) 9.11684i 0.673936i
\(184\) −4.37228 −0.322329
\(185\) 0 0
\(186\) −8.11684 −0.595156
\(187\) − 1.37228i − 0.100351i
\(188\) − 7.37228i − 0.537679i
\(189\) −3.37228 −0.245297
\(190\) 0 0
\(191\) 24.3505 1.76194 0.880971 0.473170i \(-0.156890\pi\)
0.880971 + 0.473170i \(0.156890\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) 8.00000i 0.575853i 0.957653 + 0.287926i \(0.0929658\pi\)
−0.957653 + 0.287926i \(0.907034\pi\)
\(194\) 1.25544 0.0901351
\(195\) 0 0
\(196\) 4.37228 0.312306
\(197\) 20.7446i 1.47799i 0.673712 + 0.738994i \(0.264699\pi\)
−0.673712 + 0.738994i \(0.735301\pi\)
\(198\) − 1.37228i − 0.0975238i
\(199\) −3.88316 −0.275270 −0.137635 0.990483i \(-0.543950\pi\)
−0.137635 + 0.990483i \(0.543950\pi\)
\(200\) 0 0
\(201\) −5.37228 −0.378932
\(202\) 4.11684i 0.289660i
\(203\) − 9.25544i − 0.649604i
\(204\) 1.00000 0.0700140
\(205\) 0 0
\(206\) 9.62772 0.670795
\(207\) − 4.37228i − 0.303895i
\(208\) 2.00000i 0.138675i
\(209\) 4.62772 0.320106
\(210\) 0 0
\(211\) −24.2337 −1.66832 −0.834158 0.551526i \(-0.814046\pi\)
−0.834158 + 0.551526i \(0.814046\pi\)
\(212\) 5.74456i 0.394538i
\(213\) 4.37228i 0.299584i
\(214\) 4.62772 0.316344
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 27.3723i 1.85815i
\(218\) − 8.11684i − 0.549742i
\(219\) −8.00000 −0.540590
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 1.00000i 0.0671156i
\(223\) 9.11684i 0.610509i 0.952271 + 0.305255i \(0.0987415\pi\)
−0.952271 + 0.305255i \(0.901258\pi\)
\(224\) −3.37228 −0.225320
\(225\) 0 0
\(226\) −0.255437 −0.0169914
\(227\) − 1.37228i − 0.0910815i −0.998962 0.0455408i \(-0.985499\pi\)
0.998962 0.0455408i \(-0.0145011\pi\)
\(228\) 3.37228i 0.223335i
\(229\) −22.2337 −1.46924 −0.734622 0.678477i \(-0.762640\pi\)
−0.734622 + 0.678477i \(0.762640\pi\)
\(230\) 0 0
\(231\) −4.62772 −0.304482
\(232\) 2.74456i 0.180189i
\(233\) − 16.3723i − 1.07258i −0.844033 0.536292i \(-0.819825\pi\)
0.844033 0.536292i \(-0.180175\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −7.11684 −0.463267
\(237\) − 6.11684i − 0.397332i
\(238\) − 3.37228i − 0.218593i
\(239\) −4.11684 −0.266296 −0.133148 0.991096i \(-0.542509\pi\)
−0.133148 + 0.991096i \(0.542509\pi\)
\(240\) 0 0
\(241\) −6.23369 −0.401547 −0.200774 0.979638i \(-0.564346\pi\)
−0.200774 + 0.979638i \(0.564346\pi\)
\(242\) 9.11684i 0.586053i
\(243\) 1.00000i 0.0641500i
\(244\) −9.11684 −0.583646
\(245\) 0 0
\(246\) 4.37228 0.278766
\(247\) − 6.74456i − 0.429146i
\(248\) − 8.11684i − 0.515420i
\(249\) 4.37228 0.277082
\(250\) 0 0
\(251\) −2.74456 −0.173235 −0.0866176 0.996242i \(-0.527606\pi\)
−0.0866176 + 0.996242i \(0.527606\pi\)
\(252\) − 3.37228i − 0.212434i
\(253\) − 6.00000i − 0.377217i
\(254\) 21.4891 1.34835
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 20.2337i − 1.26214i −0.775725 0.631071i \(-0.782615\pi\)
0.775725 0.631071i \(-0.217385\pi\)
\(258\) 9.37228i 0.583493i
\(259\) 3.37228 0.209543
\(260\) 0 0
\(261\) −2.74456 −0.169884
\(262\) 5.48913i 0.339119i
\(263\) − 31.3723i − 1.93450i −0.253830 0.967249i \(-0.581690\pi\)
0.253830 0.967249i \(-0.418310\pi\)
\(264\) 1.37228 0.0844581
\(265\) 0 0
\(266\) 11.3723 0.697279
\(267\) − 8.74456i − 0.535159i
\(268\) − 5.37228i − 0.328164i
\(269\) 11.4891 0.700504 0.350252 0.936655i \(-0.386096\pi\)
0.350252 + 0.936655i \(0.386096\pi\)
\(270\) 0 0
\(271\) −8.37228 −0.508580 −0.254290 0.967128i \(-0.581842\pi\)
−0.254290 + 0.967128i \(0.581842\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 6.74456i 0.408200i
\(274\) 17.4891 1.05656
\(275\) 0 0
\(276\) 4.37228 0.263180
\(277\) 13.0000i 0.781094i 0.920583 + 0.390547i \(0.127714\pi\)
−0.920583 + 0.390547i \(0.872286\pi\)
\(278\) 0.883156i 0.0529682i
\(279\) 8.11684 0.485943
\(280\) 0 0
\(281\) 23.4891 1.40124 0.700622 0.713533i \(-0.252906\pi\)
0.700622 + 0.713533i \(0.252906\pi\)
\(282\) 7.37228i 0.439013i
\(283\) − 5.11684i − 0.304165i −0.988368 0.152082i \(-0.951402\pi\)
0.988368 0.152082i \(-0.0485979\pi\)
\(284\) −4.37228 −0.259447
\(285\) 0 0
\(286\) −2.74456 −0.162289
\(287\) − 14.7446i − 0.870344i
\(288\) 1.00000i 0.0589256i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −1.25544 −0.0735950
\(292\) − 8.00000i − 0.468165i
\(293\) − 10.8832i − 0.635801i −0.948124 0.317900i \(-0.897022\pi\)
0.948124 0.317900i \(-0.102978\pi\)
\(294\) −4.37228 −0.254997
\(295\) 0 0
\(296\) −1.00000 −0.0581238
\(297\) 1.37228i 0.0796278i
\(298\) 21.8614i 1.26640i
\(299\) −8.74456 −0.505711
\(300\) 0 0
\(301\) 31.6060 1.82174
\(302\) − 3.11684i − 0.179354i
\(303\) − 4.11684i − 0.236507i
\(304\) −3.37228 −0.193414
\(305\) 0 0
\(306\) −1.00000 −0.0571662
\(307\) 18.2337i 1.04065i 0.853968 + 0.520326i \(0.174189\pi\)
−0.853968 + 0.520326i \(0.825811\pi\)
\(308\) − 4.62772i − 0.263689i
\(309\) −9.62772 −0.547702
\(310\) 0 0
\(311\) −10.8832 −0.617127 −0.308564 0.951204i \(-0.599848\pi\)
−0.308564 + 0.951204i \(0.599848\pi\)
\(312\) − 2.00000i − 0.113228i
\(313\) − 6.74456i − 0.381225i −0.981665 0.190613i \(-0.938953\pi\)
0.981665 0.190613i \(-0.0610474\pi\)
\(314\) 7.25544 0.409448
\(315\) 0 0
\(316\) 6.11684 0.344099
\(317\) − 3.25544i − 0.182844i −0.995812 0.0914218i \(-0.970859\pi\)
0.995812 0.0914218i \(-0.0291411\pi\)
\(318\) − 5.74456i − 0.322139i
\(319\) −3.76631 −0.210873
\(320\) 0 0
\(321\) −4.62772 −0.258294
\(322\) − 14.7446i − 0.821682i
\(323\) − 3.37228i − 0.187639i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 15.1168 0.837245
\(327\) 8.11684i 0.448862i
\(328\) 4.37228i 0.241419i
\(329\) 24.8614 1.37065
\(330\) 0 0
\(331\) −25.6060 −1.40743 −0.703716 0.710482i \(-0.748477\pi\)
−0.703716 + 0.710482i \(0.748477\pi\)
\(332\) 4.37228i 0.239960i
\(333\) − 1.00000i − 0.0547997i
\(334\) 9.25544 0.506435
\(335\) 0 0
\(336\) 3.37228 0.183973
\(337\) − 10.2337i − 0.557465i −0.960369 0.278732i \(-0.910086\pi\)
0.960369 0.278732i \(-0.0899142\pi\)
\(338\) − 9.00000i − 0.489535i
\(339\) 0.255437 0.0138735
\(340\) 0 0
\(341\) 11.1386 0.603189
\(342\) − 3.37228i − 0.182352i
\(343\) − 8.86141i − 0.478471i
\(344\) −9.37228 −0.505320
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) − 16.6277i − 0.892623i −0.894878 0.446311i \(-0.852737\pi\)
0.894878 0.446311i \(-0.147263\pi\)
\(348\) − 2.74456i − 0.147124i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 1.37228i 0.0731428i
\(353\) − 26.7446i − 1.42347i −0.702448 0.711735i \(-0.747910\pi\)
0.702448 0.711735i \(-0.252090\pi\)
\(354\) 7.11684 0.378256
\(355\) 0 0
\(356\) 8.74456 0.463461
\(357\) 3.37228i 0.178480i
\(358\) 7.11684i 0.376137i
\(359\) 19.3723 1.02243 0.511215 0.859453i \(-0.329196\pi\)
0.511215 + 0.859453i \(0.329196\pi\)
\(360\) 0 0
\(361\) −7.62772 −0.401459
\(362\) − 22.4891i − 1.18200i
\(363\) − 9.11684i − 0.478510i
\(364\) −6.74456 −0.353511
\(365\) 0 0
\(366\) 9.11684 0.476545
\(367\) 25.6060i 1.33662i 0.743883 + 0.668310i \(0.232982\pi\)
−0.743883 + 0.668310i \(0.767018\pi\)
\(368\) 4.37228i 0.227921i
\(369\) −4.37228 −0.227612
\(370\) 0 0
\(371\) −19.3723 −1.00576
\(372\) 8.11684i 0.420839i
\(373\) − 36.2337i − 1.87611i −0.346487 0.938055i \(-0.612626\pi\)
0.346487 0.938055i \(-0.387374\pi\)
\(374\) −1.37228 −0.0709590
\(375\) 0 0
\(376\) −7.37228 −0.380196
\(377\) 5.48913i 0.282704i
\(378\) 3.37228i 0.173451i
\(379\) −20.6060 −1.05846 −0.529229 0.848479i \(-0.677519\pi\)
−0.529229 + 0.848479i \(0.677519\pi\)
\(380\) 0 0
\(381\) −21.4891 −1.10092
\(382\) − 24.3505i − 1.24588i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 8.00000 0.407189
\(387\) − 9.37228i − 0.476420i
\(388\) − 1.25544i − 0.0637352i
\(389\) −6.25544 −0.317163 −0.158582 0.987346i \(-0.550692\pi\)
−0.158582 + 0.987346i \(0.550692\pi\)
\(390\) 0 0
\(391\) −4.37228 −0.221116
\(392\) − 4.37228i − 0.220834i
\(393\) − 5.48913i − 0.276890i
\(394\) 20.7446 1.04510
\(395\) 0 0
\(396\) −1.37228 −0.0689597
\(397\) 1.00000i 0.0501886i 0.999685 + 0.0250943i \(0.00798860\pi\)
−0.999685 + 0.0250943i \(0.992011\pi\)
\(398\) 3.88316i 0.194645i
\(399\) −11.3723 −0.569326
\(400\) 0 0
\(401\) −13.1168 −0.655024 −0.327512 0.944847i \(-0.606210\pi\)
−0.327512 + 0.944847i \(0.606210\pi\)
\(402\) 5.37228i 0.267945i
\(403\) − 16.2337i − 0.808658i
\(404\) 4.11684 0.204821
\(405\) 0 0
\(406\) −9.25544 −0.459340
\(407\) − 1.37228i − 0.0680215i
\(408\) − 1.00000i − 0.0495074i
\(409\) 13.8614 0.685402 0.342701 0.939444i \(-0.388658\pi\)
0.342701 + 0.939444i \(0.388658\pi\)
\(410\) 0 0
\(411\) −17.4891 −0.862675
\(412\) − 9.62772i − 0.474324i
\(413\) − 24.0000i − 1.18096i
\(414\) −4.37228 −0.214886
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) − 0.883156i − 0.0432483i
\(418\) − 4.62772i − 0.226349i
\(419\) 34.9783 1.70880 0.854400 0.519616i \(-0.173925\pi\)
0.854400 + 0.519616i \(0.173925\pi\)
\(420\) 0 0
\(421\) 16.2337 0.791182 0.395591 0.918427i \(-0.370540\pi\)
0.395591 + 0.918427i \(0.370540\pi\)
\(422\) 24.2337i 1.17968i
\(423\) − 7.37228i − 0.358453i
\(424\) 5.74456 0.278981
\(425\) 0 0
\(426\) 4.37228 0.211838
\(427\) − 30.7446i − 1.48783i
\(428\) − 4.62772i − 0.223689i
\(429\) 2.74456 0.132509
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) 23.0951i 1.10988i 0.831891 + 0.554940i \(0.187259\pi\)
−0.831891 + 0.554940i \(0.812741\pi\)
\(434\) 27.3723 1.31391
\(435\) 0 0
\(436\) −8.11684 −0.388726
\(437\) − 14.7446i − 0.705328i
\(438\) 8.00000i 0.382255i
\(439\) −25.4891 −1.21653 −0.608265 0.793734i \(-0.708134\pi\)
−0.608265 + 0.793734i \(0.708134\pi\)
\(440\) 0 0
\(441\) 4.37228 0.208204
\(442\) 2.00000i 0.0951303i
\(443\) − 1.62772i − 0.0773352i −0.999252 0.0386676i \(-0.987689\pi\)
0.999252 0.0386676i \(-0.0123114\pi\)
\(444\) 1.00000 0.0474579
\(445\) 0 0
\(446\) 9.11684 0.431695
\(447\) − 21.8614i − 1.03401i
\(448\) 3.37228i 0.159325i
\(449\) 5.13859 0.242505 0.121253 0.992622i \(-0.461309\pi\)
0.121253 + 0.992622i \(0.461309\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0.255437i 0.0120148i
\(453\) 3.11684i 0.146442i
\(454\) −1.37228 −0.0644044
\(455\) 0 0
\(456\) 3.37228 0.157922
\(457\) − 23.0000i − 1.07589i −0.842978 0.537947i \(-0.819200\pi\)
0.842978 0.537947i \(-0.180800\pi\)
\(458\) 22.2337i 1.03891i
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −22.7228 −1.05831 −0.529153 0.848526i \(-0.677490\pi\)
−0.529153 + 0.848526i \(0.677490\pi\)
\(462\) 4.62772i 0.215301i
\(463\) 20.6060i 0.957641i 0.877913 + 0.478820i \(0.158935\pi\)
−0.877913 + 0.478820i \(0.841065\pi\)
\(464\) 2.74456 0.127413
\(465\) 0 0
\(466\) −16.3723 −0.758431
\(467\) 1.11684i 0.0516814i 0.999666 + 0.0258407i \(0.00822626\pi\)
−0.999666 + 0.0258407i \(0.991774\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) 18.1168 0.836558
\(470\) 0 0
\(471\) −7.25544 −0.334313
\(472\) 7.11684i 0.327579i
\(473\) − 12.8614i − 0.591368i
\(474\) −6.11684 −0.280956
\(475\) 0 0
\(476\) −3.37228 −0.154568
\(477\) 5.74456i 0.263025i
\(478\) 4.11684i 0.188300i
\(479\) −25.7228 −1.17531 −0.587653 0.809113i \(-0.699948\pi\)
−0.587653 + 0.809113i \(0.699948\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 6.23369i 0.283937i
\(483\) 14.7446i 0.670901i
\(484\) 9.11684 0.414402
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) − 22.2337i − 1.00750i −0.863848 0.503752i \(-0.831952\pi\)
0.863848 0.503752i \(-0.168048\pi\)
\(488\) 9.11684i 0.412700i
\(489\) −15.1168 −0.683607
\(490\) 0 0
\(491\) −25.6277 −1.15656 −0.578281 0.815837i \(-0.696276\pi\)
−0.578281 + 0.815837i \(0.696276\pi\)
\(492\) − 4.37228i − 0.197118i
\(493\) 2.74456i 0.123609i
\(494\) −6.74456 −0.303452
\(495\) 0 0
\(496\) −8.11684 −0.364457
\(497\) − 14.7446i − 0.661384i
\(498\) − 4.37228i − 0.195927i
\(499\) −24.3723 −1.09105 −0.545527 0.838094i \(-0.683670\pi\)
−0.545527 + 0.838094i \(0.683670\pi\)
\(500\) 0 0
\(501\) −9.25544 −0.413502
\(502\) 2.74456i 0.122496i
\(503\) 30.6060i 1.36465i 0.731048 + 0.682326i \(0.239032\pi\)
−0.731048 + 0.682326i \(0.760968\pi\)
\(504\) −3.37228 −0.150213
\(505\) 0 0
\(506\) −6.00000 −0.266733
\(507\) 9.00000i 0.399704i
\(508\) − 21.4891i − 0.953426i
\(509\) 25.3723 1.12461 0.562303 0.826931i \(-0.309915\pi\)
0.562303 + 0.826931i \(0.309915\pi\)
\(510\) 0 0
\(511\) 26.9783 1.19345
\(512\) − 1.00000i − 0.0441942i
\(513\) 3.37228i 0.148890i
\(514\) −20.2337 −0.892470
\(515\) 0 0
\(516\) 9.37228 0.412592
\(517\) − 10.1168i − 0.444938i
\(518\) − 3.37228i − 0.148170i
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) 24.3505 1.06682 0.533408 0.845858i \(-0.320911\pi\)
0.533408 + 0.845858i \(0.320911\pi\)
\(522\) 2.74456i 0.120126i
\(523\) − 18.2337i − 0.797304i −0.917102 0.398652i \(-0.869478\pi\)
0.917102 0.398652i \(-0.130522\pi\)
\(524\) 5.48913 0.239794
\(525\) 0 0
\(526\) −31.3723 −1.36790
\(527\) − 8.11684i − 0.353575i
\(528\) − 1.37228i − 0.0597209i
\(529\) 3.88316 0.168833
\(530\) 0 0
\(531\) −7.11684 −0.308845
\(532\) − 11.3723i − 0.493051i
\(533\) 8.74456i 0.378769i
\(534\) −8.74456 −0.378414
\(535\) 0 0
\(536\) −5.37228 −0.232047
\(537\) − 7.11684i − 0.307114i
\(538\) − 11.4891i − 0.495331i
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 5.00000 0.214967 0.107483 0.994207i \(-0.465721\pi\)
0.107483 + 0.994207i \(0.465721\pi\)
\(542\) 8.37228i 0.359620i
\(543\) 22.4891i 0.965101i
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 6.74456 0.288641
\(547\) − 36.3723i − 1.55517i −0.628780 0.777583i \(-0.716445\pi\)
0.628780 0.777583i \(-0.283555\pi\)
\(548\) − 17.4891i − 0.747098i
\(549\) −9.11684 −0.389097
\(550\) 0 0
\(551\) −9.25544 −0.394295
\(552\) − 4.37228i − 0.186097i
\(553\) 20.6277i 0.877180i
\(554\) 13.0000 0.552317
\(555\) 0 0
\(556\) 0.883156 0.0374542
\(557\) 35.7446i 1.51455i 0.653099 + 0.757273i \(0.273469\pi\)
−0.653099 + 0.757273i \(0.726531\pi\)
\(558\) − 8.11684i − 0.343613i
\(559\) −18.7446 −0.792811
\(560\) 0 0
\(561\) 1.37228 0.0579378
\(562\) − 23.4891i − 0.990829i
\(563\) − 33.3505i − 1.40556i −0.711409 0.702779i \(-0.751942\pi\)
0.711409 0.702779i \(-0.248058\pi\)
\(564\) 7.37228 0.310429
\(565\) 0 0
\(566\) −5.11684 −0.215077
\(567\) − 3.37228i − 0.141623i
\(568\) 4.37228i 0.183457i
\(569\) 20.7446 0.869657 0.434829 0.900513i \(-0.356809\pi\)
0.434829 + 0.900513i \(0.356809\pi\)
\(570\) 0 0
\(571\) −38.3723 −1.60583 −0.802915 0.596094i \(-0.796719\pi\)
−0.802915 + 0.596094i \(0.796719\pi\)
\(572\) 2.74456i 0.114756i
\(573\) 24.3505i 1.01726i
\(574\) −14.7446 −0.615426
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 7.00000i 0.291414i 0.989328 + 0.145707i \(0.0465456\pi\)
−0.989328 + 0.145707i \(0.953454\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) −8.00000 −0.332469
\(580\) 0 0
\(581\) −14.7446 −0.611708
\(582\) 1.25544i 0.0520396i
\(583\) 7.88316i 0.326487i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) −10.8832 −0.449579
\(587\) − 2.13859i − 0.0882692i −0.999026 0.0441346i \(-0.985947\pi\)
0.999026 0.0441346i \(-0.0140530\pi\)
\(588\) 4.37228i 0.180310i
\(589\) 27.3723 1.12786
\(590\) 0 0
\(591\) −20.7446 −0.853317
\(592\) 1.00000i 0.0410997i
\(593\) 28.4674i 1.16902i 0.811388 + 0.584508i \(0.198712\pi\)
−0.811388 + 0.584508i \(0.801288\pi\)
\(594\) 1.37228 0.0563054
\(595\) 0 0
\(596\) 21.8614 0.895478
\(597\) − 3.88316i − 0.158927i
\(598\) 8.74456i 0.357592i
\(599\) 7.37228 0.301223 0.150612 0.988593i \(-0.451876\pi\)
0.150612 + 0.988593i \(0.451876\pi\)
\(600\) 0 0
\(601\) −8.97825 −0.366230 −0.183115 0.983091i \(-0.558618\pi\)
−0.183115 + 0.983091i \(0.558618\pi\)
\(602\) − 31.6060i − 1.28816i
\(603\) − 5.37228i − 0.218776i
\(604\) −3.11684 −0.126823
\(605\) 0 0
\(606\) −4.11684 −0.167235
\(607\) − 5.76631i − 0.234047i −0.993129 0.117024i \(-0.962665\pi\)
0.993129 0.117024i \(-0.0373353\pi\)
\(608\) 3.37228i 0.136764i
\(609\) 9.25544 0.375049
\(610\) 0 0
\(611\) −14.7446 −0.596501
\(612\) 1.00000i 0.0404226i
\(613\) 19.4891i 0.787158i 0.919291 + 0.393579i \(0.128763\pi\)
−0.919291 + 0.393579i \(0.871237\pi\)
\(614\) 18.2337 0.735852
\(615\) 0 0
\(616\) −4.62772 −0.186456
\(617\) 29.8397i 1.20130i 0.799512 + 0.600650i \(0.205091\pi\)
−0.799512 + 0.600650i \(0.794909\pi\)
\(618\) 9.62772i 0.387284i
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 4.37228 0.175454
\(622\) 10.8832i 0.436375i
\(623\) 29.4891i 1.18146i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) −6.74456 −0.269567
\(627\) 4.62772i 0.184813i
\(628\) − 7.25544i − 0.289523i
\(629\) −1.00000 −0.0398726
\(630\) 0 0
\(631\) −6.13859 −0.244374 −0.122187 0.992507i \(-0.538991\pi\)
−0.122187 + 0.992507i \(0.538991\pi\)
\(632\) − 6.11684i − 0.243315i
\(633\) − 24.2337i − 0.963203i
\(634\) −3.25544 −0.129290
\(635\) 0 0
\(636\) −5.74456 −0.227787
\(637\) − 8.74456i − 0.346472i
\(638\) 3.76631i 0.149110i
\(639\) −4.37228 −0.172965
\(640\) 0 0
\(641\) −4.97825 −0.196629 −0.0983145 0.995155i \(-0.531345\pi\)
−0.0983145 + 0.995155i \(0.531345\pi\)
\(642\) 4.62772i 0.182641i
\(643\) 6.88316i 0.271445i 0.990747 + 0.135723i \(0.0433356\pi\)
−0.990747 + 0.135723i \(0.956664\pi\)
\(644\) −14.7446 −0.581017
\(645\) 0 0
\(646\) −3.37228 −0.132681
\(647\) − 31.7228i − 1.24715i −0.781763 0.623576i \(-0.785679\pi\)
0.781763 0.623576i \(-0.214321\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −9.76631 −0.383361
\(650\) 0 0
\(651\) −27.3723 −1.07280
\(652\) − 15.1168i − 0.592021i
\(653\) 22.9783i 0.899208i 0.893228 + 0.449604i \(0.148435\pi\)
−0.893228 + 0.449604i \(0.851565\pi\)
\(654\) 8.11684 0.317394
\(655\) 0 0
\(656\) 4.37228 0.170709
\(657\) − 8.00000i − 0.312110i
\(658\) − 24.8614i − 0.969199i
\(659\) −29.4891 −1.14873 −0.574367 0.818598i \(-0.694752\pi\)
−0.574367 + 0.818598i \(0.694752\pi\)
\(660\) 0 0
\(661\) −24.7446 −0.962452 −0.481226 0.876597i \(-0.659808\pi\)
−0.481226 + 0.876597i \(0.659808\pi\)
\(662\) 25.6060i 0.995204i
\(663\) − 2.00000i − 0.0776736i
\(664\) 4.37228 0.169677
\(665\) 0 0
\(666\) −1.00000 −0.0387492
\(667\) 12.0000i 0.464642i
\(668\) − 9.25544i − 0.358104i
\(669\) −9.11684 −0.352478
\(670\) 0 0
\(671\) −12.5109 −0.482977
\(672\) − 3.37228i − 0.130089i
\(673\) − 17.7228i − 0.683164i −0.939852 0.341582i \(-0.889037\pi\)
0.939852 0.341582i \(-0.110963\pi\)
\(674\) −10.2337 −0.394187
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 24.0000i 0.922395i 0.887298 + 0.461197i \(0.152580\pi\)
−0.887298 + 0.461197i \(0.847420\pi\)
\(678\) − 0.255437i − 0.00981001i
\(679\) 4.23369 0.162474
\(680\) 0 0
\(681\) 1.37228 0.0525859
\(682\) − 11.1386i − 0.426519i
\(683\) 20.7446i 0.793769i 0.917869 + 0.396884i \(0.129909\pi\)
−0.917869 + 0.396884i \(0.870091\pi\)
\(684\) −3.37228 −0.128942
\(685\) 0 0
\(686\) −8.86141 −0.338330
\(687\) − 22.2337i − 0.848268i
\(688\) 9.37228i 0.357315i
\(689\) 11.4891 0.437701
\(690\) 0 0
\(691\) 33.6277 1.27926 0.639629 0.768683i \(-0.279088\pi\)
0.639629 + 0.768683i \(0.279088\pi\)
\(692\) 12.0000i 0.456172i
\(693\) − 4.62772i − 0.175792i
\(694\) −16.6277 −0.631180
\(695\) 0 0
\(696\) −2.74456 −0.104032
\(697\) 4.37228i 0.165612i
\(698\) − 10.0000i − 0.378506i
\(699\) 16.3723 0.619257
\(700\) 0 0
\(701\) −30.6060 −1.15597 −0.577986 0.816047i \(-0.696161\pi\)
−0.577986 + 0.816047i \(0.696161\pi\)
\(702\) − 2.00000i − 0.0754851i
\(703\) − 3.37228i − 0.127188i
\(704\) 1.37228 0.0517198
\(705\) 0 0
\(706\) −26.7446 −1.00654
\(707\) 13.8832i 0.522130i
\(708\) − 7.11684i − 0.267467i
\(709\) 2.62772 0.0986860 0.0493430 0.998782i \(-0.484287\pi\)
0.0493430 + 0.998782i \(0.484287\pi\)
\(710\) 0 0
\(711\) 6.11684 0.229400
\(712\) − 8.74456i − 0.327716i
\(713\) − 35.4891i − 1.32908i
\(714\) 3.37228 0.126204
\(715\) 0 0
\(716\) 7.11684 0.265969
\(717\) − 4.11684i − 0.153746i
\(718\) − 19.3723i − 0.722967i
\(719\) 38.7446 1.44493 0.722464 0.691408i \(-0.243009\pi\)
0.722464 + 0.691408i \(0.243009\pi\)
\(720\) 0 0
\(721\) 32.4674 1.20915
\(722\) 7.62772i 0.283874i
\(723\) − 6.23369i − 0.231833i
\(724\) −22.4891 −0.835802
\(725\) 0 0
\(726\) −9.11684 −0.338358
\(727\) 42.7446i 1.58531i 0.609672 + 0.792654i \(0.291301\pi\)
−0.609672 + 0.792654i \(0.708699\pi\)
\(728\) 6.74456i 0.249970i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −9.37228 −0.346646
\(732\) − 9.11684i − 0.336968i
\(733\) − 12.7446i − 0.470731i −0.971907 0.235366i \(-0.924371\pi\)
0.971907 0.235366i \(-0.0756287\pi\)
\(734\) 25.6060 0.945134
\(735\) 0 0
\(736\) 4.37228 0.161164
\(737\) − 7.37228i − 0.271561i
\(738\) 4.37228i 0.160946i
\(739\) −39.3723 −1.44833 −0.724166 0.689625i \(-0.757775\pi\)
−0.724166 + 0.689625i \(0.757775\pi\)
\(740\) 0 0
\(741\) 6.74456 0.247768
\(742\) 19.3723i 0.711179i
\(743\) 28.3723i 1.04088i 0.853899 + 0.520439i \(0.174232\pi\)
−0.853899 + 0.520439i \(0.825768\pi\)
\(744\) 8.11684 0.297578
\(745\) 0 0
\(746\) −36.2337 −1.32661
\(747\) 4.37228i 0.159973i
\(748\) 1.37228i 0.0501756i
\(749\) 15.6060 0.570230
\(750\) 0 0
\(751\) 36.4674 1.33071 0.665357 0.746526i \(-0.268279\pi\)
0.665357 + 0.746526i \(0.268279\pi\)
\(752\) 7.37228i 0.268839i
\(753\) − 2.74456i − 0.100017i
\(754\) 5.48913 0.199902
\(755\) 0 0
\(756\) 3.37228 0.122649
\(757\) 0.233688i 0.00849353i 0.999991 + 0.00424677i \(0.00135179\pi\)
−0.999991 + 0.00424677i \(0.998648\pi\)
\(758\) 20.6060i 0.748443i
\(759\) 6.00000 0.217786
\(760\) 0 0
\(761\) 5.48913 0.198981 0.0994903 0.995039i \(-0.468279\pi\)
0.0994903 + 0.995039i \(0.468279\pi\)
\(762\) 21.4891i 0.778469i
\(763\) − 27.3723i − 0.990943i
\(764\) −24.3505 −0.880971
\(765\) 0 0
\(766\) 0 0
\(767\) 14.2337i 0.513949i
\(768\) 1.00000i 0.0360844i
\(769\) 13.0000 0.468792 0.234396 0.972141i \(-0.424689\pi\)
0.234396 + 0.972141i \(0.424689\pi\)
\(770\) 0 0
\(771\) 20.2337 0.728698
\(772\) − 8.00000i − 0.287926i
\(773\) − 45.8614i − 1.64952i −0.565483 0.824760i \(-0.691310\pi\)
0.565483 0.824760i \(-0.308690\pi\)
\(774\) −9.37228 −0.336880
\(775\) 0 0
\(776\) −1.25544 −0.0450676
\(777\) 3.37228i 0.120980i
\(778\) 6.25544i 0.224268i
\(779\) −14.7446 −0.528279
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 4.37228i 0.156352i
\(783\) − 2.74456i − 0.0980827i
\(784\) −4.37228 −0.156153
\(785\) 0 0
\(786\) −5.48913 −0.195791
\(787\) 7.35053i 0.262018i 0.991381 + 0.131009i \(0.0418217\pi\)
−0.991381 + 0.131009i \(0.958178\pi\)
\(788\) − 20.7446i − 0.738994i
\(789\) 31.3723 1.11688
\(790\) 0 0
\(791\) −0.861407 −0.0306281
\(792\) 1.37228i 0.0487619i
\(793\) 18.2337i 0.647497i
\(794\) 1.00000 0.0354887
\(795\) 0 0
\(796\) 3.88316 0.137635
\(797\) − 17.7446i − 0.628545i −0.949333 0.314272i \(-0.898239\pi\)
0.949333 0.314272i \(-0.101761\pi\)
\(798\) 11.3723i 0.402574i
\(799\) −7.37228 −0.260813
\(800\) 0 0
\(801\) 8.74456 0.308974
\(802\) 13.1168i 0.463172i
\(803\) − 10.9783i − 0.387414i
\(804\) 5.37228 0.189466
\(805\) 0 0
\(806\) −16.2337 −0.571807
\(807\) 11.4891i 0.404436i
\(808\) − 4.11684i − 0.144830i
\(809\) 21.6060 0.759625 0.379813 0.925063i \(-0.375988\pi\)
0.379813 + 0.925063i \(0.375988\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 9.25544i 0.324802i
\(813\) − 8.37228i − 0.293629i
\(814\) −1.37228 −0.0480984
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) − 31.6060i − 1.10575i
\(818\) − 13.8614i − 0.484653i
\(819\) −6.74456 −0.235674
\(820\) 0 0
\(821\) −33.2554 −1.16062 −0.580311 0.814395i \(-0.697069\pi\)
−0.580311 + 0.814395i \(0.697069\pi\)
\(822\) 17.4891i 0.610003i
\(823\) 48.4674i 1.68947i 0.535188 + 0.844733i \(0.320241\pi\)
−0.535188 + 0.844733i \(0.679759\pi\)
\(824\) −9.62772 −0.335397
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) − 51.0951i − 1.77675i −0.459118 0.888375i \(-0.651835\pi\)
0.459118 0.888375i \(-0.348165\pi\)
\(828\) 4.37228i 0.151947i
\(829\) −29.2554 −1.01608 −0.508042 0.861332i \(-0.669630\pi\)
−0.508042 + 0.861332i \(0.669630\pi\)
\(830\) 0 0
\(831\) −13.0000 −0.450965
\(832\) − 2.00000i − 0.0693375i
\(833\) − 4.37228i − 0.151491i
\(834\) −0.883156 −0.0305812
\(835\) 0 0
\(836\) −4.62772 −0.160053
\(837\) 8.11684i 0.280559i
\(838\) − 34.9783i − 1.20830i
\(839\) −1.62772 −0.0561951 −0.0280975 0.999605i \(-0.508945\pi\)
−0.0280975 + 0.999605i \(0.508945\pi\)
\(840\) 0 0
\(841\) −21.4674 −0.740254
\(842\) − 16.2337i − 0.559450i
\(843\) 23.4891i 0.809008i
\(844\) 24.2337 0.834158
\(845\) 0 0
\(846\) −7.37228 −0.253464
\(847\) 30.7446i 1.05640i
\(848\) − 5.74456i − 0.197269i
\(849\) 5.11684 0.175610
\(850\) 0 0
\(851\) −4.37228 −0.149880
\(852\) − 4.37228i − 0.149792i
\(853\) − 10.8614i − 0.371887i −0.982560 0.185944i \(-0.940466\pi\)
0.982560 0.185944i \(-0.0595342\pi\)
\(854\) −30.7446 −1.05206
\(855\) 0 0
\(856\) −4.62772 −0.158172
\(857\) − 29.7446i − 1.01605i −0.861341 0.508027i \(-0.830375\pi\)
0.861341 0.508027i \(-0.169625\pi\)
\(858\) − 2.74456i − 0.0936978i
\(859\) −38.3505 −1.30850 −0.654252 0.756277i \(-0.727016\pi\)
−0.654252 + 0.756277i \(0.727016\pi\)
\(860\) 0 0
\(861\) 14.7446 0.502493
\(862\) − 12.0000i − 0.408722i
\(863\) − 19.3723i − 0.659440i −0.944079 0.329720i \(-0.893046\pi\)
0.944079 0.329720i \(-0.106954\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 23.0951 0.784803
\(867\) − 1.00000i − 0.0339618i
\(868\) − 27.3723i − 0.929076i
\(869\) 8.39403 0.284748
\(870\) 0 0
\(871\) −10.7446 −0.364066
\(872\) 8.11684i 0.274871i
\(873\) − 1.25544i − 0.0424901i
\(874\) −14.7446 −0.498742
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) 46.0000i 1.55331i 0.629926 + 0.776655i \(0.283085\pi\)
−0.629926 + 0.776655i \(0.716915\pi\)
\(878\) 25.4891i 0.860216i
\(879\) 10.8832 0.367080
\(880\) 0 0
\(881\) 46.2119 1.55692 0.778460 0.627694i \(-0.216001\pi\)
0.778460 + 0.627694i \(0.216001\pi\)
\(882\) − 4.37228i − 0.147222i
\(883\) − 42.2337i − 1.42128i −0.703557 0.710638i \(-0.748406\pi\)
0.703557 0.710638i \(-0.251594\pi\)
\(884\) 2.00000 0.0672673
\(885\) 0 0
\(886\) −1.62772 −0.0546843
\(887\) 0.605969i 0.0203465i 0.999948 + 0.0101732i \(0.00323829\pi\)
−0.999948 + 0.0101732i \(0.996762\pi\)
\(888\) − 1.00000i − 0.0335578i
\(889\) 72.4674 2.43048
\(890\) 0 0
\(891\) −1.37228 −0.0459732
\(892\) − 9.11684i − 0.305255i
\(893\) − 24.8614i − 0.831955i
\(894\) −21.8614 −0.731155
\(895\) 0 0
\(896\) 3.37228 0.112660
\(897\) − 8.74456i − 0.291972i
\(898\) − 5.13859i − 0.171477i
\(899\) −22.2772 −0.742986
\(900\) 0 0
\(901\) 5.74456 0.191379
\(902\) 6.00000i 0.199778i
\(903\) 31.6060i 1.05178i
\(904\) 0.255437 0.00849572
\(905\) 0 0
\(906\) 3.11684 0.103550
\(907\) − 50.6060i − 1.68034i −0.542320 0.840172i \(-0.682454\pi\)
0.542320 0.840172i \(-0.317546\pi\)
\(908\) 1.37228i 0.0455408i
\(909\) 4.11684 0.136547
\(910\) 0 0
\(911\) −29.4891 −0.977018 −0.488509 0.872559i \(-0.662459\pi\)
−0.488509 + 0.872559i \(0.662459\pi\)
\(912\) − 3.37228i − 0.111667i
\(913\) 6.00000i 0.198571i
\(914\) −23.0000 −0.760772
\(915\) 0 0
\(916\) 22.2337 0.734622
\(917\) 18.5109i 0.611283i
\(918\) − 1.00000i − 0.0330049i
\(919\) −43.5842 −1.43771 −0.718855 0.695160i \(-0.755334\pi\)
−0.718855 + 0.695160i \(0.755334\pi\)
\(920\) 0 0
\(921\) −18.2337 −0.600820
\(922\) 22.7228i 0.748336i
\(923\) 8.74456i 0.287831i
\(924\) 4.62772 0.152241
\(925\) 0 0
\(926\) 20.6060 0.677154
\(927\) − 9.62772i − 0.316216i
\(928\) − 2.74456i − 0.0900947i
\(929\) −16.7228 −0.548658 −0.274329 0.961636i \(-0.588456\pi\)
−0.274329 + 0.961636i \(0.588456\pi\)
\(930\) 0 0
\(931\) 14.7446 0.483234
\(932\) 16.3723i 0.536292i
\(933\) − 10.8832i − 0.356299i
\(934\) 1.11684 0.0365443
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) − 1.39403i − 0.0455410i −0.999741 0.0227705i \(-0.992751\pi\)
0.999741 0.0227705i \(-0.00724870\pi\)
\(938\) − 18.1168i − 0.591536i
\(939\) 6.74456 0.220100
\(940\) 0 0
\(941\) 46.4674 1.51479 0.757397 0.652955i \(-0.226471\pi\)
0.757397 + 0.652955i \(0.226471\pi\)
\(942\) 7.25544i 0.236395i
\(943\) 19.1168i 0.622530i
\(944\) 7.11684 0.231634
\(945\) 0 0
\(946\) −12.8614 −0.418160
\(947\) − 28.6277i − 0.930276i −0.885238 0.465138i \(-0.846005\pi\)
0.885238 0.465138i \(-0.153995\pi\)
\(948\) 6.11684i 0.198666i
\(949\) −16.0000 −0.519382
\(950\) 0 0
\(951\) 3.25544 0.105565
\(952\) 3.37228i 0.109296i
\(953\) − 4.97825i − 0.161261i −0.996744 0.0806307i \(-0.974307\pi\)
0.996744 0.0806307i \(-0.0256934\pi\)
\(954\) 5.74456 0.185987
\(955\) 0 0
\(956\) 4.11684 0.133148
\(957\) − 3.76631i − 0.121748i
\(958\) 25.7228i 0.831066i
\(959\) 58.9783 1.90451
\(960\) 0 0
\(961\) 34.8832 1.12526
\(962\) 2.00000i 0.0644826i
\(963\) − 4.62772i − 0.149126i
\(964\) 6.23369 0.200774
\(965\) 0 0
\(966\) 14.7446 0.474399
\(967\) − 29.3505i − 0.943849i −0.881639 0.471925i \(-0.843559\pi\)
0.881639 0.471925i \(-0.156441\pi\)
\(968\) − 9.11684i − 0.293026i
\(969\) 3.37228 0.108333
\(970\) 0 0
\(971\) 21.8614 0.701566 0.350783 0.936457i \(-0.385915\pi\)
0.350783 + 0.936457i \(0.385915\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 2.97825i 0.0954783i
\(974\) −22.2337 −0.712413
\(975\) 0 0
\(976\) 9.11684 0.291823
\(977\) − 6.00000i − 0.191957i −0.995383 0.0959785i \(-0.969402\pi\)
0.995383 0.0959785i \(-0.0305980\pi\)
\(978\) 15.1168i 0.483383i
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) −8.11684 −0.259151
\(982\) 25.6277i 0.817813i
\(983\) 44.2337i 1.41084i 0.708792 + 0.705418i \(0.249241\pi\)
−0.708792 + 0.705418i \(0.750759\pi\)
\(984\) −4.37228 −0.139383
\(985\) 0 0
\(986\) 2.74456 0.0874047
\(987\) 24.8614i 0.791347i
\(988\) 6.74456i 0.214573i
\(989\) −40.9783 −1.30303
\(990\) 0 0
\(991\) −8.46738 −0.268975 −0.134488 0.990915i \(-0.542939\pi\)
−0.134488 + 0.990915i \(0.542939\pi\)
\(992\) 8.11684i 0.257710i
\(993\) − 25.6060i − 0.812581i
\(994\) −14.7446 −0.467669
\(995\) 0 0
\(996\) −4.37228 −0.138541
\(997\) − 15.8832i − 0.503025i −0.967854 0.251512i \(-0.919072\pi\)
0.967854 0.251512i \(-0.0809279\pi\)
\(998\) 24.3723i 0.771491i
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.d.v.2449.1 4
5.2 odd 4 2550.2.a.bm.1.2 yes 2
5.3 odd 4 2550.2.a.bg.1.1 2
5.4 even 2 inner 2550.2.d.v.2449.4 4
15.2 even 4 7650.2.a.cv.1.2 2
15.8 even 4 7650.2.a.df.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2550.2.a.bg.1.1 2 5.3 odd 4
2550.2.a.bm.1.2 yes 2 5.2 odd 4
2550.2.d.v.2449.1 4 1.1 even 1 trivial
2550.2.d.v.2449.4 4 5.4 even 2 inner
7650.2.a.cv.1.2 2 15.2 even 4
7650.2.a.df.1.1 2 15.8 even 4