Properties

Label 2550.2.d.u.2449.1
Level $2550$
Weight $2$
Character 2550.2449
Analytic conductor $20.362$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(2449,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2550.2449
Dual form 2550.2.d.u.2449.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -4.89898i q^{7} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -4.89898i q^{7} +1.00000i q^{8} -1.00000 q^{9} -1.00000i q^{12} -6.89898i q^{13} -4.89898 q^{14} +1.00000 q^{16} -1.00000i q^{17} +1.00000i q^{18} -4.00000 q^{19} +4.89898 q^{21} +4.00000i q^{23} -1.00000 q^{24} -6.89898 q^{26} -1.00000i q^{27} +4.89898i q^{28} -6.00000 q^{29} +4.00000 q^{31} -1.00000i q^{32} -1.00000 q^{34} +1.00000 q^{36} +6.00000i q^{37} +4.00000i q^{38} +6.89898 q^{39} -2.89898 q^{41} -4.89898i q^{42} -8.89898i q^{43} +4.00000 q^{46} +9.79796i q^{47} +1.00000i q^{48} -17.0000 q^{49} +1.00000 q^{51} +6.89898i q^{52} +7.79796i q^{53} -1.00000 q^{54} +4.89898 q^{56} -4.00000i q^{57} +6.00000i q^{58} -4.89898 q^{59} +11.7980 q^{61} -4.00000i q^{62} +4.89898i q^{63} -1.00000 q^{64} +0.898979i q^{67} +1.00000i q^{68} -4.00000 q^{69} -8.89898 q^{71} -1.00000i q^{72} +10.8990i q^{73} +6.00000 q^{74} +4.00000 q^{76} -6.89898i q^{78} +5.79796 q^{79} +1.00000 q^{81} +2.89898i q^{82} -13.7980i q^{83} -4.89898 q^{84} -8.89898 q^{86} -6.00000i q^{87} +7.79796 q^{89} -33.7980 q^{91} -4.00000i q^{92} +4.00000i q^{93} +9.79796 q^{94} +1.00000 q^{96} -12.6969i q^{97} +17.0000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9} + 4 q^{16} - 16 q^{19} - 4 q^{24} - 8 q^{26} - 24 q^{29} + 16 q^{31} - 4 q^{34} + 4 q^{36} + 8 q^{39} + 8 q^{41} + 16 q^{46} - 68 q^{49} + 4 q^{51} - 4 q^{54} + 8 q^{61} - 4 q^{64} - 16 q^{69} - 16 q^{71} + 24 q^{74} + 16 q^{76} - 16 q^{79} + 4 q^{81} - 16 q^{86} - 8 q^{89} - 96 q^{91} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2550\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(851\) \(1327\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) − 4.89898i − 1.85164i −0.377964 0.925820i \(-0.623376\pi\)
0.377964 0.925820i \(-0.376624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) − 6.89898i − 1.91343i −0.291022 0.956716i \(-0.593995\pi\)
0.291022 0.956716i \(-0.406005\pi\)
\(14\) −4.89898 −1.30931
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 1.00000i − 0.242536i
\(18\) 1.00000i 0.235702i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 4.89898 1.06904
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −6.89898 −1.35300
\(27\) − 1.00000i − 0.192450i
\(28\) 4.89898i 0.925820i
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 6.89898 1.10472
\(40\) 0 0
\(41\) −2.89898 −0.452745 −0.226372 0.974041i \(-0.572687\pi\)
−0.226372 + 0.974041i \(0.572687\pi\)
\(42\) − 4.89898i − 0.755929i
\(43\) − 8.89898i − 1.35708i −0.734563 0.678541i \(-0.762613\pi\)
0.734563 0.678541i \(-0.237387\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 9.79796i 1.42918i 0.699544 + 0.714590i \(0.253387\pi\)
−0.699544 + 0.714590i \(0.746613\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −17.0000 −2.42857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 6.89898i 0.956716i
\(53\) 7.79796i 1.07113i 0.844493 + 0.535566i \(0.179902\pi\)
−0.844493 + 0.535566i \(0.820098\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 4.89898 0.654654
\(57\) − 4.00000i − 0.529813i
\(58\) 6.00000i 0.787839i
\(59\) −4.89898 −0.637793 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(60\) 0 0
\(61\) 11.7980 1.51057 0.755287 0.655394i \(-0.227498\pi\)
0.755287 + 0.655394i \(0.227498\pi\)
\(62\) − 4.00000i − 0.508001i
\(63\) 4.89898i 0.617213i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 0.898979i 0.109828i 0.998491 + 0.0549139i \(0.0174884\pi\)
−0.998491 + 0.0549139i \(0.982512\pi\)
\(68\) 1.00000i 0.121268i
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) −8.89898 −1.05611 −0.528057 0.849209i \(-0.677079\pi\)
−0.528057 + 0.849209i \(0.677079\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) 10.8990i 1.27563i 0.770190 + 0.637815i \(0.220161\pi\)
−0.770190 + 0.637815i \(0.779839\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) − 6.89898i − 0.781156i
\(79\) 5.79796 0.652321 0.326161 0.945314i \(-0.394245\pi\)
0.326161 + 0.945314i \(0.394245\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.89898i 0.320139i
\(83\) − 13.7980i − 1.51452i −0.653112 0.757261i \(-0.726537\pi\)
0.653112 0.757261i \(-0.273463\pi\)
\(84\) −4.89898 −0.534522
\(85\) 0 0
\(86\) −8.89898 −0.959602
\(87\) − 6.00000i − 0.643268i
\(88\) 0 0
\(89\) 7.79796 0.826582 0.413291 0.910599i \(-0.364379\pi\)
0.413291 + 0.910599i \(0.364379\pi\)
\(90\) 0 0
\(91\) −33.7980 −3.54299
\(92\) − 4.00000i − 0.417029i
\(93\) 4.00000i 0.414781i
\(94\) 9.79796 1.01058
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) − 12.6969i − 1.28918i −0.764529 0.644589i \(-0.777028\pi\)
0.764529 0.644589i \(-0.222972\pi\)
\(98\) 17.0000i 1.71726i
\(99\) 0 0
\(100\) 0 0
\(101\) −18.8990 −1.88052 −0.940259 0.340459i \(-0.889418\pi\)
−0.940259 + 0.340459i \(0.889418\pi\)
\(102\) − 1.00000i − 0.0990148i
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 6.89898 0.676501
\(105\) 0 0
\(106\) 7.79796 0.757405
\(107\) 5.79796i 0.560510i 0.959926 + 0.280255i \(0.0904190\pi\)
−0.959926 + 0.280255i \(0.909581\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −11.7980 −1.13004 −0.565020 0.825077i \(-0.691131\pi\)
−0.565020 + 0.825077i \(0.691131\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) − 4.89898i − 0.462910i
\(113\) − 7.79796i − 0.733570i −0.930306 0.366785i \(-0.880458\pi\)
0.930306 0.366785i \(-0.119542\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 6.89898i 0.637811i
\(118\) 4.89898i 0.450988i
\(119\) −4.89898 −0.449089
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) − 11.7980i − 1.06814i
\(123\) − 2.89898i − 0.261392i
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 4.89898 0.436436
\(127\) − 12.0000i − 1.06483i −0.846484 0.532414i \(-0.821285\pi\)
0.846484 0.532414i \(-0.178715\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 8.89898 0.783511
\(130\) 0 0
\(131\) 9.79796 0.856052 0.428026 0.903767i \(-0.359209\pi\)
0.428026 + 0.903767i \(0.359209\pi\)
\(132\) 0 0
\(133\) 19.5959i 1.69918i
\(134\) 0.898979 0.0776600
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −13.7980 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(140\) 0 0
\(141\) −9.79796 −0.825137
\(142\) 8.89898i 0.746786i
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 10.8990 0.902006
\(147\) − 17.0000i − 1.40214i
\(148\) − 6.00000i − 0.493197i
\(149\) 18.8990 1.54826 0.774132 0.633024i \(-0.218186\pi\)
0.774132 + 0.633024i \(0.218186\pi\)
\(150\) 0 0
\(151\) −9.79796 −0.797347 −0.398673 0.917093i \(-0.630529\pi\)
−0.398673 + 0.917093i \(0.630529\pi\)
\(152\) − 4.00000i − 0.324443i
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) 0 0
\(156\) −6.89898 −0.552360
\(157\) − 1.10102i − 0.0878710i −0.999034 0.0439355i \(-0.986010\pi\)
0.999034 0.0439355i \(-0.0139896\pi\)
\(158\) − 5.79796i − 0.461261i
\(159\) −7.79796 −0.618418
\(160\) 0 0
\(161\) 19.5959 1.54437
\(162\) − 1.00000i − 0.0785674i
\(163\) 2.20204i 0.172477i 0.996275 + 0.0862386i \(0.0274847\pi\)
−0.996275 + 0.0862386i \(0.972515\pi\)
\(164\) 2.89898 0.226372
\(165\) 0 0
\(166\) −13.7980 −1.07093
\(167\) 2.20204i 0.170399i 0.996364 + 0.0851995i \(0.0271528\pi\)
−0.996364 + 0.0851995i \(0.972847\pi\)
\(168\) 4.89898i 0.377964i
\(169\) −34.5959 −2.66122
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 8.89898i 0.678541i
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 0 0
\(177\) − 4.89898i − 0.368230i
\(178\) − 7.79796i − 0.584482i
\(179\) 4.89898 0.366167 0.183083 0.983097i \(-0.441392\pi\)
0.183083 + 0.983097i \(0.441392\pi\)
\(180\) 0 0
\(181\) −4.20204 −0.312335 −0.156168 0.987731i \(-0.549914\pi\)
−0.156168 + 0.987731i \(0.549914\pi\)
\(182\) 33.7980i 2.50527i
\(183\) 11.7980i 0.872130i
\(184\) −4.00000 −0.294884
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 0 0
\(188\) − 9.79796i − 0.714590i
\(189\) −4.89898 −0.356348
\(190\) 0 0
\(191\) −9.79796 −0.708955 −0.354478 0.935064i \(-0.615341\pi\)
−0.354478 + 0.935064i \(0.615341\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) 1.10102i 0.0792532i 0.999215 + 0.0396266i \(0.0126168\pi\)
−0.999215 + 0.0396266i \(0.987383\pi\)
\(194\) −12.6969 −0.911587
\(195\) 0 0
\(196\) 17.0000 1.21429
\(197\) − 13.5959i − 0.968669i −0.874883 0.484335i \(-0.839062\pi\)
0.874883 0.484335i \(-0.160938\pi\)
\(198\) 0 0
\(199\) −15.5959 −1.10557 −0.552783 0.833325i \(-0.686434\pi\)
−0.552783 + 0.833325i \(0.686434\pi\)
\(200\) 0 0
\(201\) −0.898979 −0.0634091
\(202\) 18.8990i 1.32973i
\(203\) 29.3939i 2.06305i
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) − 4.00000i − 0.278019i
\(208\) − 6.89898i − 0.478358i
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) − 7.79796i − 0.535566i
\(213\) − 8.89898i − 0.609748i
\(214\) 5.79796 0.396340
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) − 19.5959i − 1.33026i
\(218\) 11.7980i 0.799059i
\(219\) −10.8990 −0.736485
\(220\) 0 0
\(221\) −6.89898 −0.464076
\(222\) 6.00000i 0.402694i
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) −4.89898 −0.327327
\(225\) 0 0
\(226\) −7.79796 −0.518713
\(227\) − 21.7980i − 1.44678i −0.690439 0.723391i \(-0.742583\pi\)
0.690439 0.723391i \(-0.257417\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 13.5959 0.898444 0.449222 0.893420i \(-0.351701\pi\)
0.449222 + 0.893420i \(0.351701\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 6.00000i − 0.393919i
\(233\) − 14.0000i − 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 6.89898 0.451000
\(235\) 0 0
\(236\) 4.89898 0.318896
\(237\) 5.79796i 0.376618i
\(238\) 4.89898i 0.317554i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 13.5959 0.875790 0.437895 0.899026i \(-0.355724\pi\)
0.437895 + 0.899026i \(0.355724\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 1.00000i 0.0641500i
\(244\) −11.7980 −0.755287
\(245\) 0 0
\(246\) −2.89898 −0.184832
\(247\) 27.5959i 1.75589i
\(248\) 4.00000i 0.254000i
\(249\) 13.7980 0.874410
\(250\) 0 0
\(251\) 4.89898 0.309221 0.154610 0.987976i \(-0.450588\pi\)
0.154610 + 0.987976i \(0.450588\pi\)
\(252\) − 4.89898i − 0.308607i
\(253\) 0 0
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 2.00000i − 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) − 8.89898i − 0.554026i
\(259\) 29.3939 1.82645
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) − 9.79796i − 0.605320i
\(263\) − 8.00000i − 0.493301i −0.969104 0.246651i \(-0.920670\pi\)
0.969104 0.246651i \(-0.0793300\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 19.5959 1.20150
\(267\) 7.79796i 0.477227i
\(268\) − 0.898979i − 0.0549139i
\(269\) −9.59592 −0.585073 −0.292537 0.956254i \(-0.594499\pi\)
−0.292537 + 0.956254i \(0.594499\pi\)
\(270\) 0 0
\(271\) −1.79796 −0.109218 −0.0546091 0.998508i \(-0.517391\pi\)
−0.0546091 + 0.998508i \(0.517391\pi\)
\(272\) − 1.00000i − 0.0606339i
\(273\) − 33.7980i − 2.04555i
\(274\) 14.0000 0.845771
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) 7.79796i 0.468534i 0.972172 + 0.234267i \(0.0752690\pi\)
−0.972172 + 0.234267i \(0.924731\pi\)
\(278\) 13.7980i 0.827547i
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 27.7980 1.65829 0.829144 0.559036i \(-0.188829\pi\)
0.829144 + 0.559036i \(0.188829\pi\)
\(282\) 9.79796i 0.583460i
\(283\) − 23.5959i − 1.40263i −0.712851 0.701316i \(-0.752596\pi\)
0.712851 0.701316i \(-0.247404\pi\)
\(284\) 8.89898 0.528057
\(285\) 0 0
\(286\) 0 0
\(287\) 14.2020i 0.838320i
\(288\) 1.00000i 0.0589256i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 12.6969 0.744308
\(292\) − 10.8990i − 0.637815i
\(293\) − 13.5959i − 0.794282i −0.917758 0.397141i \(-0.870002\pi\)
0.917758 0.397141i \(-0.129998\pi\)
\(294\) −17.0000 −0.991460
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) − 18.8990i − 1.09479i
\(299\) 27.5959 1.59591
\(300\) 0 0
\(301\) −43.5959 −2.51283
\(302\) 9.79796i 0.563809i
\(303\) − 18.8990i − 1.08572i
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) 0.898979i 0.0513075i 0.999671 + 0.0256537i \(0.00816673\pi\)
−0.999671 + 0.0256537i \(0.991833\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −7.10102 −0.402662 −0.201331 0.979523i \(-0.564527\pi\)
−0.201331 + 0.979523i \(0.564527\pi\)
\(312\) 6.89898i 0.390578i
\(313\) − 6.89898i − 0.389953i −0.980808 0.194977i \(-0.937537\pi\)
0.980808 0.194977i \(-0.0624631\pi\)
\(314\) −1.10102 −0.0621342
\(315\) 0 0
\(316\) −5.79796 −0.326161
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) 7.79796i 0.437288i
\(319\) 0 0
\(320\) 0 0
\(321\) −5.79796 −0.323611
\(322\) − 19.5959i − 1.09204i
\(323\) 4.00000i 0.222566i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 2.20204 0.121960
\(327\) − 11.7980i − 0.652429i
\(328\) − 2.89898i − 0.160069i
\(329\) 48.0000 2.64633
\(330\) 0 0
\(331\) −5.79796 −0.318685 −0.159342 0.987223i \(-0.550937\pi\)
−0.159342 + 0.987223i \(0.550937\pi\)
\(332\) 13.7980i 0.757261i
\(333\) − 6.00000i − 0.328798i
\(334\) 2.20204 0.120490
\(335\) 0 0
\(336\) 4.89898 0.267261
\(337\) 32.6969i 1.78112i 0.454870 + 0.890558i \(0.349686\pi\)
−0.454870 + 0.890558i \(0.650314\pi\)
\(338\) 34.5959i 1.88177i
\(339\) 7.79796 0.423527
\(340\) 0 0
\(341\) 0 0
\(342\) − 4.00000i − 0.216295i
\(343\) 48.9898i 2.64520i
\(344\) 8.89898 0.479801
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 21.7980i 1.17018i 0.810970 + 0.585088i \(0.198940\pi\)
−0.810970 + 0.585088i \(0.801060\pi\)
\(348\) 6.00000i 0.321634i
\(349\) −4.20204 −0.224930 −0.112465 0.993656i \(-0.535875\pi\)
−0.112465 + 0.993656i \(0.535875\pi\)
\(350\) 0 0
\(351\) −6.89898 −0.368240
\(352\) 0 0
\(353\) 26.0000i 1.38384i 0.721974 + 0.691920i \(0.243235\pi\)
−0.721974 + 0.691920i \(0.756765\pi\)
\(354\) −4.89898 −0.260378
\(355\) 0 0
\(356\) −7.79796 −0.413291
\(357\) − 4.89898i − 0.259281i
\(358\) − 4.89898i − 0.258919i
\(359\) −37.3939 −1.97357 −0.986787 0.162025i \(-0.948198\pi\)
−0.986787 + 0.162025i \(0.948198\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 4.20204i 0.220854i
\(363\) − 11.0000i − 0.577350i
\(364\) 33.7980 1.77149
\(365\) 0 0
\(366\) 11.7980 0.616689
\(367\) − 27.1010i − 1.41466i −0.706883 0.707331i \(-0.749899\pi\)
0.706883 0.707331i \(-0.250101\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 2.89898 0.150915
\(370\) 0 0
\(371\) 38.2020 1.98335
\(372\) − 4.00000i − 0.207390i
\(373\) − 24.6969i − 1.27876i −0.768891 0.639380i \(-0.779191\pi\)
0.768891 0.639380i \(-0.220809\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −9.79796 −0.505291
\(377\) 41.3939i 2.13189i
\(378\) 4.89898i 0.251976i
\(379\) 29.7980 1.53062 0.765309 0.643663i \(-0.222586\pi\)
0.765309 + 0.643663i \(0.222586\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 9.79796i 0.501307i
\(383\) − 8.00000i − 0.408781i −0.978889 0.204390i \(-0.934479\pi\)
0.978889 0.204390i \(-0.0655212\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 1.10102 0.0560405
\(387\) 8.89898i 0.452361i
\(388\) 12.6969i 0.644589i
\(389\) 38.4949 1.95177 0.975884 0.218288i \(-0.0700472\pi\)
0.975884 + 0.218288i \(0.0700472\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) − 17.0000i − 0.858630i
\(393\) 9.79796i 0.494242i
\(394\) −13.5959 −0.684952
\(395\) 0 0
\(396\) 0 0
\(397\) 1.59592i 0.0800968i 0.999198 + 0.0400484i \(0.0127512\pi\)
−0.999198 + 0.0400484i \(0.987249\pi\)
\(398\) 15.5959i 0.781753i
\(399\) −19.5959 −0.981023
\(400\) 0 0
\(401\) 22.8990 1.14352 0.571760 0.820421i \(-0.306261\pi\)
0.571760 + 0.820421i \(0.306261\pi\)
\(402\) 0.898979i 0.0448370i
\(403\) − 27.5959i − 1.37465i
\(404\) 18.8990 0.940259
\(405\) 0 0
\(406\) 29.3939 1.45879
\(407\) 0 0
\(408\) 1.00000i 0.0495074i
\(409\) 17.5959 0.870062 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 4.00000i 0.197066i
\(413\) 24.0000i 1.18096i
\(414\) −4.00000 −0.196589
\(415\) 0 0
\(416\) −6.89898 −0.338250
\(417\) − 13.7980i − 0.675689i
\(418\) 0 0
\(419\) 17.7980 0.869487 0.434744 0.900554i \(-0.356839\pi\)
0.434744 + 0.900554i \(0.356839\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 12.0000i 0.584151i
\(423\) − 9.79796i − 0.476393i
\(424\) −7.79796 −0.378702
\(425\) 0 0
\(426\) −8.89898 −0.431157
\(427\) − 57.7980i − 2.79704i
\(428\) − 5.79796i − 0.280255i
\(429\) 0 0
\(430\) 0 0
\(431\) −23.1010 −1.11274 −0.556369 0.830936i \(-0.687806\pi\)
−0.556369 + 0.830936i \(0.687806\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) 35.3939i 1.70092i 0.526039 + 0.850461i \(0.323677\pi\)
−0.526039 + 0.850461i \(0.676323\pi\)
\(434\) −19.5959 −0.940634
\(435\) 0 0
\(436\) 11.7980 0.565020
\(437\) − 16.0000i − 0.765384i
\(438\) 10.8990i 0.520773i
\(439\) −5.79796 −0.276721 −0.138361 0.990382i \(-0.544183\pi\)
−0.138361 + 0.990382i \(0.544183\pi\)
\(440\) 0 0
\(441\) 17.0000 0.809524
\(442\) 6.89898i 0.328151i
\(443\) − 37.7980i − 1.79584i −0.440164 0.897918i \(-0.645080\pi\)
0.440164 0.897918i \(-0.354920\pi\)
\(444\) 6.00000 0.284747
\(445\) 0 0
\(446\) 4.00000 0.189405
\(447\) 18.8990i 0.893891i
\(448\) 4.89898i 0.231455i
\(449\) −6.89898 −0.325583 −0.162791 0.986660i \(-0.552050\pi\)
−0.162791 + 0.986660i \(0.552050\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 7.79796i 0.366785i
\(453\) − 9.79796i − 0.460348i
\(454\) −21.7980 −1.02303
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 16.2020i 0.757900i 0.925417 + 0.378950i \(0.123715\pi\)
−0.925417 + 0.378950i \(0.876285\pi\)
\(458\) − 13.5959i − 0.635296i
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −28.6969 −1.33655 −0.668275 0.743914i \(-0.732967\pi\)
−0.668275 + 0.743914i \(0.732967\pi\)
\(462\) 0 0
\(463\) − 7.59592i − 0.353012i −0.984300 0.176506i \(-0.943520\pi\)
0.984300 0.176506i \(-0.0564795\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −14.0000 −0.648537
\(467\) − 7.59592i − 0.351497i −0.984435 0.175749i \(-0.943765\pi\)
0.984435 0.175749i \(-0.0562346\pi\)
\(468\) − 6.89898i − 0.318905i
\(469\) 4.40408 0.203362
\(470\) 0 0
\(471\) 1.10102 0.0507323
\(472\) − 4.89898i − 0.225494i
\(473\) 0 0
\(474\) 5.79796 0.266309
\(475\) 0 0
\(476\) 4.89898 0.224544
\(477\) − 7.79796i − 0.357044i
\(478\) 0 0
\(479\) 32.8990 1.50319 0.751596 0.659623i \(-0.229284\pi\)
0.751596 + 0.659623i \(0.229284\pi\)
\(480\) 0 0
\(481\) 41.3939 1.88740
\(482\) − 13.5959i − 0.619277i
\(483\) 19.5959i 0.891645i
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) − 20.8990i − 0.947023i −0.880788 0.473512i \(-0.842986\pi\)
0.880788 0.473512i \(-0.157014\pi\)
\(488\) 11.7980i 0.534069i
\(489\) −2.20204 −0.0995797
\(490\) 0 0
\(491\) −1.30306 −0.0588063 −0.0294032 0.999568i \(-0.509361\pi\)
−0.0294032 + 0.999568i \(0.509361\pi\)
\(492\) 2.89898i 0.130696i
\(493\) 6.00000i 0.270226i
\(494\) 27.5959 1.24160
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 43.5959i 1.95554i
\(498\) − 13.7980i − 0.618301i
\(499\) 39.5959 1.77256 0.886278 0.463153i \(-0.153282\pi\)
0.886278 + 0.463153i \(0.153282\pi\)
\(500\) 0 0
\(501\) −2.20204 −0.0983799
\(502\) − 4.89898i − 0.218652i
\(503\) − 4.00000i − 0.178351i −0.996016 0.0891756i \(-0.971577\pi\)
0.996016 0.0891756i \(-0.0284232\pi\)
\(504\) −4.89898 −0.218218
\(505\) 0 0
\(506\) 0 0
\(507\) − 34.5959i − 1.53646i
\(508\) 12.0000i 0.532414i
\(509\) 15.3031 0.678296 0.339148 0.940733i \(-0.389861\pi\)
0.339148 + 0.940733i \(0.389861\pi\)
\(510\) 0 0
\(511\) 53.3939 2.36201
\(512\) − 1.00000i − 0.0441942i
\(513\) 4.00000i 0.176604i
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) −8.89898 −0.391756
\(517\) 0 0
\(518\) − 29.3939i − 1.29149i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −40.2929 −1.76526 −0.882631 0.470066i \(-0.844230\pi\)
−0.882631 + 0.470066i \(0.844230\pi\)
\(522\) − 6.00000i − 0.262613i
\(523\) − 18.6969i − 0.817560i −0.912633 0.408780i \(-0.865954\pi\)
0.912633 0.408780i \(-0.134046\pi\)
\(524\) −9.79796 −0.428026
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) − 4.00000i − 0.174243i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 4.89898 0.212598
\(532\) − 19.5959i − 0.849591i
\(533\) 20.0000i 0.866296i
\(534\) 7.79796 0.337451
\(535\) 0 0
\(536\) −0.898979 −0.0388300
\(537\) 4.89898i 0.211407i
\(538\) 9.59592i 0.413709i
\(539\) 0 0
\(540\) 0 0
\(541\) −7.79796 −0.335260 −0.167630 0.985850i \(-0.553611\pi\)
−0.167630 + 0.985850i \(0.553611\pi\)
\(542\) 1.79796i 0.0772290i
\(543\) − 4.20204i − 0.180327i
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) −33.7980 −1.44642
\(547\) 0.404082i 0.0172773i 0.999963 + 0.00863865i \(0.00274980\pi\)
−0.999963 + 0.00863865i \(0.997250\pi\)
\(548\) − 14.0000i − 0.598050i
\(549\) −11.7980 −0.503525
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) − 4.00000i − 0.170251i
\(553\) − 28.4041i − 1.20786i
\(554\) 7.79796 0.331304
\(555\) 0 0
\(556\) 13.7980 0.585164
\(557\) 19.7980i 0.838866i 0.907786 + 0.419433i \(0.137771\pi\)
−0.907786 + 0.419433i \(0.862229\pi\)
\(558\) 4.00000i 0.169334i
\(559\) −61.3939 −2.59668
\(560\) 0 0
\(561\) 0 0
\(562\) − 27.7980i − 1.17259i
\(563\) − 21.7980i − 0.918674i −0.888262 0.459337i \(-0.848087\pi\)
0.888262 0.459337i \(-0.151913\pi\)
\(564\) 9.79796 0.412568
\(565\) 0 0
\(566\) −23.5959 −0.991810
\(567\) − 4.89898i − 0.205738i
\(568\) − 8.89898i − 0.373393i
\(569\) −34.0000 −1.42535 −0.712677 0.701492i \(-0.752517\pi\)
−0.712677 + 0.701492i \(0.752517\pi\)
\(570\) 0 0
\(571\) 29.7980 1.24701 0.623503 0.781821i \(-0.285709\pi\)
0.623503 + 0.781821i \(0.285709\pi\)
\(572\) 0 0
\(573\) − 9.79796i − 0.409316i
\(574\) 14.2020 0.592782
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 27.3939i − 1.14042i −0.821498 0.570211i \(-0.806861\pi\)
0.821498 0.570211i \(-0.193139\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) −1.10102 −0.0457569
\(580\) 0 0
\(581\) −67.5959 −2.80435
\(582\) − 12.6969i − 0.526305i
\(583\) 0 0
\(584\) −10.8990 −0.451003
\(585\) 0 0
\(586\) −13.5959 −0.561642
\(587\) − 41.3939i − 1.70851i −0.519856 0.854254i \(-0.674014\pi\)
0.519856 0.854254i \(-0.325986\pi\)
\(588\) 17.0000i 0.701068i
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 13.5959 0.559261
\(592\) 6.00000i 0.246598i
\(593\) − 1.59592i − 0.0655365i −0.999463 0.0327682i \(-0.989568\pi\)
0.999463 0.0327682i \(-0.0104323\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.8990 −0.774132
\(597\) − 15.5959i − 0.638298i
\(598\) − 27.5959i − 1.12848i
\(599\) −21.3939 −0.874130 −0.437065 0.899430i \(-0.643982\pi\)
−0.437065 + 0.899430i \(0.643982\pi\)
\(600\) 0 0
\(601\) 16.2020 0.660895 0.330448 0.943824i \(-0.392800\pi\)
0.330448 + 0.943824i \(0.392800\pi\)
\(602\) 43.5959i 1.77684i
\(603\) − 0.898979i − 0.0366093i
\(604\) 9.79796 0.398673
\(605\) 0 0
\(606\) −18.8990 −0.767719
\(607\) − 32.4949i − 1.31893i −0.751736 0.659464i \(-0.770783\pi\)
0.751736 0.659464i \(-0.229217\pi\)
\(608\) 4.00000i 0.162221i
\(609\) −29.3939 −1.19110
\(610\) 0 0
\(611\) 67.5959 2.73464
\(612\) − 1.00000i − 0.0404226i
\(613\) 14.4949i 0.585443i 0.956198 + 0.292722i \(0.0945609\pi\)
−0.956198 + 0.292722i \(0.905439\pi\)
\(614\) 0.898979 0.0362799
\(615\) 0 0
\(616\) 0 0
\(617\) − 37.5959i − 1.51355i −0.653673 0.756777i \(-0.726773\pi\)
0.653673 0.756777i \(-0.273227\pi\)
\(618\) − 4.00000i − 0.160904i
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 7.10102i 0.284725i
\(623\) − 38.2020i − 1.53053i
\(624\) 6.89898 0.276180
\(625\) 0 0
\(626\) −6.89898 −0.275739
\(627\) 0 0
\(628\) 1.10102i 0.0439355i
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 5.79796i 0.230630i
\(633\) − 12.0000i − 0.476957i
\(634\) 14.0000 0.556011
\(635\) 0 0
\(636\) 7.79796 0.309209
\(637\) 117.283i 4.64691i
\(638\) 0 0
\(639\) 8.89898 0.352038
\(640\) 0 0
\(641\) −20.6969 −0.817480 −0.408740 0.912651i \(-0.634032\pi\)
−0.408740 + 0.912651i \(0.634032\pi\)
\(642\) 5.79796i 0.228827i
\(643\) − 29.7980i − 1.17512i −0.809182 0.587558i \(-0.800089\pi\)
0.809182 0.587558i \(-0.199911\pi\)
\(644\) −19.5959 −0.772187
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) − 32.0000i − 1.25805i −0.777385 0.629025i \(-0.783454\pi\)
0.777385 0.629025i \(-0.216546\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 0 0
\(651\) 19.5959 0.768025
\(652\) − 2.20204i − 0.0862386i
\(653\) − 30.0000i − 1.17399i −0.809590 0.586995i \(-0.800311\pi\)
0.809590 0.586995i \(-0.199689\pi\)
\(654\) −11.7980 −0.461337
\(655\) 0 0
\(656\) −2.89898 −0.113186
\(657\) − 10.8990i − 0.425210i
\(658\) − 48.0000i − 1.87123i
\(659\) −30.6969 −1.19578 −0.597891 0.801577i \(-0.703995\pi\)
−0.597891 + 0.801577i \(0.703995\pi\)
\(660\) 0 0
\(661\) −19.7980 −0.770051 −0.385026 0.922906i \(-0.625807\pi\)
−0.385026 + 0.922906i \(0.625807\pi\)
\(662\) 5.79796i 0.225344i
\(663\) − 6.89898i − 0.267934i
\(664\) 13.7980 0.535465
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) − 24.0000i − 0.929284i
\(668\) − 2.20204i − 0.0851995i
\(669\) −4.00000 −0.154649
\(670\) 0 0
\(671\) 0 0
\(672\) − 4.89898i − 0.188982i
\(673\) 33.1010i 1.27595i 0.770057 + 0.637975i \(0.220228\pi\)
−0.770057 + 0.637975i \(0.779772\pi\)
\(674\) 32.6969 1.25944
\(675\) 0 0
\(676\) 34.5959 1.33061
\(677\) − 13.5959i − 0.522534i −0.965267 0.261267i \(-0.915860\pi\)
0.965267 0.261267i \(-0.0841402\pi\)
\(678\) − 7.79796i − 0.299479i
\(679\) −62.2020 −2.38710
\(680\) 0 0
\(681\) 21.7980 0.835300
\(682\) 0 0
\(683\) − 12.0000i − 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) 48.9898 1.87044
\(687\) 13.5959i 0.518717i
\(688\) − 8.89898i − 0.339270i
\(689\) 53.7980 2.04954
\(690\) 0 0
\(691\) −27.1918 −1.03443 −0.517213 0.855857i \(-0.673031\pi\)
−0.517213 + 0.855857i \(0.673031\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 0 0
\(694\) 21.7980 0.827439
\(695\) 0 0
\(696\) 6.00000 0.227429
\(697\) 2.89898i 0.109807i
\(698\) 4.20204i 0.159050i
\(699\) 14.0000 0.529529
\(700\) 0 0
\(701\) 14.8990 0.562727 0.281363 0.959601i \(-0.409213\pi\)
0.281363 + 0.959601i \(0.409213\pi\)
\(702\) 6.89898i 0.260385i
\(703\) − 24.0000i − 0.905177i
\(704\) 0 0
\(705\) 0 0
\(706\) 26.0000 0.978523
\(707\) 92.5857i 3.48204i
\(708\) 4.89898i 0.184115i
\(709\) 31.7980 1.19420 0.597099 0.802168i \(-0.296320\pi\)
0.597099 + 0.802168i \(0.296320\pi\)
\(710\) 0 0
\(711\) −5.79796 −0.217440
\(712\) 7.79796i 0.292241i
\(713\) 16.0000i 0.599205i
\(714\) −4.89898 −0.183340
\(715\) 0 0
\(716\) −4.89898 −0.183083
\(717\) 0 0
\(718\) 37.3939i 1.39553i
\(719\) 12.4949 0.465981 0.232991 0.972479i \(-0.425149\pi\)
0.232991 + 0.972479i \(0.425149\pi\)
\(720\) 0 0
\(721\) −19.5959 −0.729790
\(722\) 3.00000i 0.111648i
\(723\) 13.5959i 0.505638i
\(724\) 4.20204 0.156168
\(725\) 0 0
\(726\) −11.0000 −0.408248
\(727\) 0.404082i 0.0149866i 0.999972 + 0.00749329i \(0.00238521\pi\)
−0.999972 + 0.00749329i \(0.997615\pi\)
\(728\) − 33.7980i − 1.25264i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.89898 −0.329141
\(732\) − 11.7980i − 0.436065i
\(733\) 46.4949i 1.71733i 0.512539 + 0.858664i \(0.328705\pi\)
−0.512539 + 0.858664i \(0.671295\pi\)
\(734\) −27.1010 −1.00032
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 0 0
\(738\) − 2.89898i − 0.106713i
\(739\) 9.39388 0.345559 0.172780 0.984960i \(-0.444725\pi\)
0.172780 + 0.984960i \(0.444725\pi\)
\(740\) 0 0
\(741\) −27.5959 −1.01376
\(742\) − 38.2020i − 1.40244i
\(743\) 9.39388i 0.344628i 0.985042 + 0.172314i \(0.0551244\pi\)
−0.985042 + 0.172314i \(0.944876\pi\)
\(744\) −4.00000 −0.146647
\(745\) 0 0
\(746\) −24.6969 −0.904219
\(747\) 13.7980i 0.504841i
\(748\) 0 0
\(749\) 28.4041 1.03786
\(750\) 0 0
\(751\) 21.7980 0.795419 0.397709 0.917511i \(-0.369805\pi\)
0.397709 + 0.917511i \(0.369805\pi\)
\(752\) 9.79796i 0.357295i
\(753\) 4.89898i 0.178529i
\(754\) 41.3939 1.50748
\(755\) 0 0
\(756\) 4.89898 0.178174
\(757\) − 4.69694i − 0.170713i −0.996350 0.0853566i \(-0.972797\pi\)
0.996350 0.0853566i \(-0.0272029\pi\)
\(758\) − 29.7980i − 1.08231i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.59592 −0.0578520 −0.0289260 0.999582i \(-0.509209\pi\)
−0.0289260 + 0.999582i \(0.509209\pi\)
\(762\) − 12.0000i − 0.434714i
\(763\) 57.7980i 2.09243i
\(764\) 9.79796 0.354478
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 33.7980i 1.22037i
\(768\) 1.00000i 0.0360844i
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) − 1.10102i − 0.0396266i
\(773\) 35.3939i 1.27303i 0.771265 + 0.636515i \(0.219625\pi\)
−0.771265 + 0.636515i \(0.780375\pi\)
\(774\) 8.89898 0.319867
\(775\) 0 0
\(776\) 12.6969 0.455794
\(777\) 29.3939i 1.05450i
\(778\) − 38.4949i − 1.38011i
\(779\) 11.5959 0.415467
\(780\) 0 0
\(781\) 0 0
\(782\) − 4.00000i − 0.143040i
\(783\) 6.00000i 0.214423i
\(784\) −17.0000 −0.607143
\(785\) 0 0
\(786\) 9.79796 0.349482
\(787\) − 45.7980i − 1.63252i −0.577684 0.816260i \(-0.696043\pi\)
0.577684 0.816260i \(-0.303957\pi\)
\(788\) 13.5959i 0.484335i
\(789\) 8.00000 0.284808
\(790\) 0 0
\(791\) −38.2020 −1.35831
\(792\) 0 0
\(793\) − 81.3939i − 2.89038i
\(794\) 1.59592 0.0566370
\(795\) 0 0
\(796\) 15.5959 0.552783
\(797\) 26.0000i 0.920967i 0.887668 + 0.460484i \(0.152324\pi\)
−0.887668 + 0.460484i \(0.847676\pi\)
\(798\) 19.5959i 0.693688i
\(799\) 9.79796 0.346627
\(800\) 0 0
\(801\) −7.79796 −0.275527
\(802\) − 22.8990i − 0.808591i
\(803\) 0 0
\(804\) 0.898979 0.0317046
\(805\) 0 0
\(806\) −27.5959 −0.972025
\(807\) − 9.59592i − 0.337792i
\(808\) − 18.8990i − 0.664864i
\(809\) −32.6969 −1.14956 −0.574782 0.818307i \(-0.694913\pi\)
−0.574782 + 0.818307i \(0.694913\pi\)
\(810\) 0 0
\(811\) 25.3939 0.891700 0.445850 0.895108i \(-0.352902\pi\)
0.445850 + 0.895108i \(0.352902\pi\)
\(812\) − 29.3939i − 1.03152i
\(813\) − 1.79796i − 0.0630572i
\(814\) 0 0
\(815\) 0 0
\(816\) 1.00000 0.0350070
\(817\) 35.5959i 1.24534i
\(818\) − 17.5959i − 0.615227i
\(819\) 33.7980 1.18100
\(820\) 0 0
\(821\) 15.7980 0.551353 0.275676 0.961251i \(-0.411098\pi\)
0.275676 + 0.961251i \(0.411098\pi\)
\(822\) 14.0000i 0.488306i
\(823\) − 20.8990i − 0.728493i −0.931303 0.364246i \(-0.881327\pi\)
0.931303 0.364246i \(-0.118673\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) − 4.00000i − 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 4.00000i 0.139010i
\(829\) −3.39388 −0.117874 −0.0589371 0.998262i \(-0.518771\pi\)
−0.0589371 + 0.998262i \(0.518771\pi\)
\(830\) 0 0
\(831\) −7.79796 −0.270508
\(832\) 6.89898i 0.239179i
\(833\) 17.0000i 0.589015i
\(834\) −13.7980 −0.477784
\(835\) 0 0
\(836\) 0 0
\(837\) − 4.00000i − 0.138260i
\(838\) − 17.7980i − 0.614820i
\(839\) 7.10102 0.245154 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) − 14.0000i − 0.482472i
\(843\) 27.7980i 0.957413i
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) −9.79796 −0.336861
\(847\) 53.8888i 1.85164i
\(848\) 7.79796i 0.267783i
\(849\) 23.5959 0.809810
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 8.89898i 0.304874i
\(853\) − 11.3939i − 0.390119i −0.980791 0.195059i \(-0.937510\pi\)
0.980791 0.195059i \(-0.0624900\pi\)
\(854\) −57.7980 −1.97781
\(855\) 0 0
\(856\) −5.79796 −0.198170
\(857\) − 10.0000i − 0.341593i −0.985306 0.170797i \(-0.945366\pi\)
0.985306 0.170797i \(-0.0546341\pi\)
\(858\) 0 0
\(859\) −5.79796 −0.197824 −0.0989119 0.995096i \(-0.531536\pi\)
−0.0989119 + 0.995096i \(0.531536\pi\)
\(860\) 0 0
\(861\) −14.2020 −0.484004
\(862\) 23.1010i 0.786824i
\(863\) 45.3939i 1.54523i 0.634878 + 0.772613i \(0.281051\pi\)
−0.634878 + 0.772613i \(0.718949\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 35.3939 1.20273
\(867\) − 1.00000i − 0.0339618i
\(868\) 19.5959i 0.665129i
\(869\) 0 0
\(870\) 0 0
\(871\) 6.20204 0.210148
\(872\) − 11.7980i − 0.399529i
\(873\) 12.6969i 0.429726i
\(874\) −16.0000 −0.541208
\(875\) 0 0
\(876\) 10.8990 0.368242
\(877\) − 31.3939i − 1.06010i −0.847968 0.530048i \(-0.822174\pi\)
0.847968 0.530048i \(-0.177826\pi\)
\(878\) 5.79796i 0.195672i
\(879\) 13.5959 0.458579
\(880\) 0 0
\(881\) 34.4949 1.16216 0.581081 0.813846i \(-0.302630\pi\)
0.581081 + 0.813846i \(0.302630\pi\)
\(882\) − 17.0000i − 0.572420i
\(883\) − 26.6969i − 0.898424i −0.893425 0.449212i \(-0.851705\pi\)
0.893425 0.449212i \(-0.148295\pi\)
\(884\) 6.89898 0.232038
\(885\) 0 0
\(886\) −37.7980 −1.26985
\(887\) − 12.0000i − 0.402921i −0.979497 0.201460i \(-0.935431\pi\)
0.979497 0.201460i \(-0.0645687\pi\)
\(888\) − 6.00000i − 0.201347i
\(889\) −58.7878 −1.97168
\(890\) 0 0
\(891\) 0 0
\(892\) − 4.00000i − 0.133930i
\(893\) − 39.1918i − 1.31150i
\(894\) 18.8990 0.632076
\(895\) 0 0
\(896\) 4.89898 0.163663
\(897\) 27.5959i 0.921401i
\(898\) 6.89898i 0.230222i
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 7.79796 0.259788
\(902\) 0 0
\(903\) − 43.5959i − 1.45078i
\(904\) 7.79796 0.259356
\(905\) 0 0
\(906\) −9.79796 −0.325515
\(907\) − 33.3939i − 1.10883i −0.832242 0.554413i \(-0.812943\pi\)
0.832242 0.554413i \(-0.187057\pi\)
\(908\) 21.7980i 0.723391i
\(909\) 18.8990 0.626840
\(910\) 0 0
\(911\) 23.1010 0.765371 0.382685 0.923879i \(-0.374999\pi\)
0.382685 + 0.923879i \(0.374999\pi\)
\(912\) − 4.00000i − 0.132453i
\(913\) 0 0
\(914\) 16.2020 0.535916
\(915\) 0 0
\(916\) −13.5959 −0.449222
\(917\) − 48.0000i − 1.58510i
\(918\) 1.00000i 0.0330049i
\(919\) −1.79796 −0.0593092 −0.0296546 0.999560i \(-0.509441\pi\)
−0.0296546 + 0.999560i \(0.509441\pi\)
\(920\) 0 0
\(921\) −0.898979 −0.0296224
\(922\) 28.6969i 0.945083i
\(923\) 61.3939i 2.02080i
\(924\) 0 0
\(925\) 0 0
\(926\) −7.59592 −0.249617
\(927\) 4.00000i 0.131377i
\(928\) 6.00000i 0.196960i
\(929\) −36.2929 −1.19073 −0.595365 0.803455i \(-0.702993\pi\)
−0.595365 + 0.803455i \(0.702993\pi\)
\(930\) 0 0
\(931\) 68.0000 2.22861
\(932\) 14.0000i 0.458585i
\(933\) − 7.10102i − 0.232477i
\(934\) −7.59592 −0.248546
\(935\) 0 0
\(936\) −6.89898 −0.225500
\(937\) 39.3939i 1.28694i 0.765471 + 0.643471i \(0.222506\pi\)
−0.765471 + 0.643471i \(0.777494\pi\)
\(938\) − 4.40408i − 0.143798i
\(939\) 6.89898 0.225140
\(940\) 0 0
\(941\) −16.2020 −0.528171 −0.264086 0.964499i \(-0.585070\pi\)
−0.264086 + 0.964499i \(0.585070\pi\)
\(942\) − 1.10102i − 0.0358732i
\(943\) − 11.5959i − 0.377615i
\(944\) −4.89898 −0.159448
\(945\) 0 0
\(946\) 0 0
\(947\) 21.7980i 0.708338i 0.935181 + 0.354169i \(0.115236\pi\)
−0.935181 + 0.354169i \(0.884764\pi\)
\(948\) − 5.79796i − 0.188309i
\(949\) 75.1918 2.44083
\(950\) 0 0
\(951\) −14.0000 −0.453981
\(952\) − 4.89898i − 0.158777i
\(953\) 41.1918i 1.33433i 0.744908 + 0.667167i \(0.232493\pi\)
−0.744908 + 0.667167i \(0.767507\pi\)
\(954\) −7.79796 −0.252468
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) − 32.8990i − 1.06292i
\(959\) 68.5857 2.21475
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 41.3939i − 1.33459i
\(963\) − 5.79796i − 0.186837i
\(964\) −13.5959 −0.437895
\(965\) 0 0
\(966\) 19.5959 0.630488
\(967\) − 41.3939i − 1.33114i −0.746337 0.665569i \(-0.768189\pi\)
0.746337 0.665569i \(-0.231811\pi\)
\(968\) − 11.0000i − 0.353553i
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) 38.6969 1.24184 0.620922 0.783872i \(-0.286758\pi\)
0.620922 + 0.783872i \(0.286758\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 67.5959i 2.16703i
\(974\) −20.8990 −0.669646
\(975\) 0 0
\(976\) 11.7980 0.377643
\(977\) − 29.5959i − 0.946857i −0.880832 0.473429i \(-0.843016\pi\)
0.880832 0.473429i \(-0.156984\pi\)
\(978\) 2.20204i 0.0704135i
\(979\) 0 0
\(980\) 0 0
\(981\) 11.7980 0.376680
\(982\) 1.30306i 0.0415824i
\(983\) − 9.39388i − 0.299618i −0.988715 0.149809i \(-0.952134\pi\)
0.988715 0.149809i \(-0.0478659\pi\)
\(984\) 2.89898 0.0924161
\(985\) 0 0
\(986\) 6.00000 0.191079
\(987\) 48.0000i 1.52786i
\(988\) − 27.5959i − 0.877943i
\(989\) 35.5959 1.13188
\(990\) 0 0
\(991\) −15.5959 −0.495421 −0.247710 0.968834i \(-0.579678\pi\)
−0.247710 + 0.968834i \(0.579678\pi\)
\(992\) − 4.00000i − 0.127000i
\(993\) − 5.79796i − 0.183993i
\(994\) 43.5959 1.38278
\(995\) 0 0
\(996\) −13.7980 −0.437205
\(997\) − 21.5959i − 0.683950i −0.939709 0.341975i \(-0.888904\pi\)
0.939709 0.341975i \(-0.111096\pi\)
\(998\) − 39.5959i − 1.25339i
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.d.u.2449.1 4
5.2 odd 4 2550.2.a.bl.1.2 2
5.3 odd 4 510.2.a.h.1.1 2
5.4 even 2 inner 2550.2.d.u.2449.4 4
15.2 even 4 7650.2.a.cu.1.2 2
15.8 even 4 1530.2.a.s.1.1 2
20.3 even 4 4080.2.a.bq.1.2 2
85.33 odd 4 8670.2.a.be.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.h.1.1 2 5.3 odd 4
1530.2.a.s.1.1 2 15.8 even 4
2550.2.a.bl.1.2 2 5.2 odd 4
2550.2.d.u.2449.1 4 1.1 even 1 trivial
2550.2.d.u.2449.4 4 5.4 even 2 inner
4080.2.a.bq.1.2 2 20.3 even 4
7650.2.a.cu.1.2 2 15.2 even 4
8670.2.a.be.1.2 2 85.33 odd 4