Properties

Label 2550.2.d.p.2449.2
Level $2550$
Weight $2$
Character 2550.2449
Analytic conductor $20.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(2449,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2550.2449
Dual form 2550.2.d.p.2449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -5.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -5.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} -1.00000 q^{11} +1.00000i q^{12} -2.00000i q^{13} +5.00000 q^{14} +1.00000 q^{16} -1.00000i q^{17} -1.00000i q^{18} +7.00000 q^{19} -5.00000 q^{21} -1.00000i q^{22} +2.00000i q^{23} -1.00000 q^{24} +2.00000 q^{26} +1.00000i q^{27} +5.00000i q^{28} +10.0000 q^{29} -5.00000 q^{31} +1.00000i q^{32} +1.00000i q^{33} +1.00000 q^{34} +1.00000 q^{36} -3.00000i q^{37} +7.00000i q^{38} -2.00000 q^{39} -10.0000 q^{41} -5.00000i q^{42} -9.00000i q^{43} +1.00000 q^{44} -2.00000 q^{46} +7.00000i q^{47} -1.00000i q^{48} -18.0000 q^{49} -1.00000 q^{51} +2.00000i q^{52} -11.0000i q^{53} -1.00000 q^{54} -5.00000 q^{56} -7.00000i q^{57} +10.0000i q^{58} +2.00000 q^{61} -5.00000i q^{62} +5.00000i q^{63} -1.00000 q^{64} -1.00000 q^{66} -13.0000i q^{67} +1.00000i q^{68} +2.00000 q^{69} -10.0000 q^{71} +1.00000i q^{72} +4.00000i q^{73} +3.00000 q^{74} -7.00000 q^{76} +5.00000i q^{77} -2.00000i q^{78} -3.00000 q^{79} +1.00000 q^{81} -10.0000i q^{82} +14.0000i q^{83} +5.00000 q^{84} +9.00000 q^{86} -10.0000i q^{87} +1.00000i q^{88} -4.00000 q^{89} -10.0000 q^{91} -2.00000i q^{92} +5.00000i q^{93} -7.00000 q^{94} +1.00000 q^{96} -6.00000i q^{97} -18.0000i q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 2 q^{6} - 2 q^{9} - 2 q^{11} + 10 q^{14} + 2 q^{16} + 14 q^{19} - 10 q^{21} - 2 q^{24} + 4 q^{26} + 20 q^{29} - 10 q^{31} + 2 q^{34} + 2 q^{36} - 4 q^{39} - 20 q^{41} + 2 q^{44} - 4 q^{46} - 36 q^{49} - 2 q^{51} - 2 q^{54} - 10 q^{56} + 4 q^{61} - 2 q^{64} - 2 q^{66} + 4 q^{69} - 20 q^{71} + 6 q^{74} - 14 q^{76} - 6 q^{79} + 2 q^{81} + 10 q^{84} + 18 q^{86} - 8 q^{89} - 20 q^{91} - 14 q^{94} + 2 q^{96} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2550\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(851\) \(1327\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) − 5.00000i − 1.88982i −0.327327 0.944911i \(-0.606148\pi\)
0.327327 0.944911i \(-0.393852\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 5.00000 1.33631
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 1.00000i − 0.242536i
\(18\) − 1.00000i − 0.235702i
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) −5.00000 −1.09109
\(22\) − 1.00000i − 0.213201i
\(23\) 2.00000i 0.417029i 0.978019 + 0.208514i \(0.0668628\pi\)
−0.978019 + 0.208514i \(0.933137\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 1.00000i 0.192450i
\(28\) 5.00000i 0.944911i
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.00000i 0.174078i
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 3.00000i − 0.493197i −0.969118 0.246598i \(-0.920687\pi\)
0.969118 0.246598i \(-0.0793129\pi\)
\(38\) 7.00000i 1.13555i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) − 5.00000i − 0.771517i
\(43\) − 9.00000i − 1.37249i −0.727372 0.686244i \(-0.759258\pi\)
0.727372 0.686244i \(-0.240742\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 7.00000i 1.02105i 0.859861 + 0.510527i \(0.170550\pi\)
−0.859861 + 0.510527i \(0.829450\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −18.0000 −2.57143
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 2.00000i 0.277350i
\(53\) − 11.0000i − 1.51097i −0.655168 0.755483i \(-0.727402\pi\)
0.655168 0.755483i \(-0.272598\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −5.00000 −0.668153
\(57\) − 7.00000i − 0.927173i
\(58\) 10.0000i 1.31306i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) − 5.00000i − 0.635001i
\(63\) 5.00000i 0.629941i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.00000 −0.123091
\(67\) − 13.0000i − 1.58820i −0.607785 0.794101i \(-0.707942\pi\)
0.607785 0.794101i \(-0.292058\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) 5.00000i 0.569803i
\(78\) − 2.00000i − 0.226455i
\(79\) −3.00000 −0.337526 −0.168763 0.985657i \(-0.553977\pi\)
−0.168763 + 0.985657i \(0.553977\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 10.0000i − 1.10432i
\(83\) 14.0000i 1.53670i 0.640030 + 0.768350i \(0.278922\pi\)
−0.640030 + 0.768350i \(0.721078\pi\)
\(84\) 5.00000 0.545545
\(85\) 0 0
\(86\) 9.00000 0.970495
\(87\) − 10.0000i − 1.07211i
\(88\) 1.00000i 0.106600i
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) −10.0000 −1.04828
\(92\) − 2.00000i − 0.208514i
\(93\) 5.00000i 0.518476i
\(94\) −7.00000 −0.721995
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) − 6.00000i − 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) − 18.0000i − 1.81827i
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −7.00000 −0.696526 −0.348263 0.937397i \(-0.613228\pi\)
−0.348263 + 0.937397i \(0.613228\pi\)
\(102\) − 1.00000i − 0.0990148i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 11.0000 1.06841
\(107\) 9.00000i 0.870063i 0.900415 + 0.435031i \(0.143263\pi\)
−0.900415 + 0.435031i \(0.856737\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −19.0000 −1.81987 −0.909935 0.414751i \(-0.863869\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) − 5.00000i − 0.472456i
\(113\) − 3.00000i − 0.282216i −0.989994 0.141108i \(-0.954933\pi\)
0.989994 0.141108i \(-0.0450665\pi\)
\(114\) 7.00000 0.655610
\(115\) 0 0
\(116\) −10.0000 −0.928477
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) −5.00000 −0.458349
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 2.00000i 0.181071i
\(123\) 10.0000i 0.901670i
\(124\) 5.00000 0.449013
\(125\) 0 0
\(126\) −5.00000 −0.445435
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −9.00000 −0.792406
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) − 1.00000i − 0.0870388i
\(133\) − 35.0000i − 3.03488i
\(134\) 13.0000 1.12303
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 2.00000i 0.170251i
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 7.00000 0.589506
\(142\) − 10.0000i − 0.839181i
\(143\) 2.00000i 0.167248i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 18.0000i 1.48461i
\(148\) 3.00000i 0.246598i
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) − 7.00000i − 0.567775i
\(153\) 1.00000i 0.0808452i
\(154\) −5.00000 −0.402911
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 16.0000i 1.27694i 0.769647 + 0.638470i \(0.220432\pi\)
−0.769647 + 0.638470i \(0.779568\pi\)
\(158\) − 3.00000i − 0.238667i
\(159\) −11.0000 −0.872357
\(160\) 0 0
\(161\) 10.0000 0.788110
\(162\) 1.00000i 0.0785674i
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) −14.0000 −1.08661
\(167\) 6.00000i 0.464294i 0.972681 + 0.232147i \(0.0745750\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(168\) 5.00000i 0.385758i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −7.00000 −0.535303
\(172\) 9.00000i 0.686244i
\(173\) − 20.0000i − 1.52057i −0.649589 0.760286i \(-0.725059\pi\)
0.649589 0.760286i \(-0.274941\pi\)
\(174\) 10.0000 0.758098
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) − 4.00000i − 0.299813i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) − 10.0000i − 0.741249i
\(183\) − 2.00000i − 0.147844i
\(184\) 2.00000 0.147442
\(185\) 0 0
\(186\) −5.00000 −0.366618
\(187\) 1.00000i 0.0731272i
\(188\) − 7.00000i − 0.510527i
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) 25.0000 1.80894 0.904468 0.426541i \(-0.140268\pi\)
0.904468 + 0.426541i \(0.140268\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 24.0000i − 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) 18.0000 1.28571
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 1.00000i 0.0710669i
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 0 0
\(201\) −13.0000 −0.916949
\(202\) − 7.00000i − 0.492518i
\(203\) − 50.0000i − 3.50931i
\(204\) 1.00000 0.0700140
\(205\) 0 0
\(206\) 0 0
\(207\) − 2.00000i − 0.139010i
\(208\) − 2.00000i − 0.138675i
\(209\) −7.00000 −0.484200
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 11.0000i 0.755483i
\(213\) 10.0000i 0.685189i
\(214\) −9.00000 −0.615227
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 25.0000i 1.69711i
\(218\) − 19.0000i − 1.28684i
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) − 3.00000i − 0.201347i
\(223\) 10.0000i 0.669650i 0.942280 + 0.334825i \(0.108677\pi\)
−0.942280 + 0.334825i \(0.891323\pi\)
\(224\) 5.00000 0.334077
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) − 1.00000i − 0.0663723i −0.999449 0.0331862i \(-0.989435\pi\)
0.999449 0.0331862i \(-0.0105654\pi\)
\(228\) 7.00000i 0.463586i
\(229\) 12.0000 0.792982 0.396491 0.918039i \(-0.370228\pi\)
0.396491 + 0.918039i \(0.370228\pi\)
\(230\) 0 0
\(231\) 5.00000 0.328976
\(232\) − 10.0000i − 0.656532i
\(233\) − 18.0000i − 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 0 0
\(237\) 3.00000i 0.194871i
\(238\) − 5.00000i − 0.324102i
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 0 0
\(241\) −20.0000 −1.28831 −0.644157 0.764894i \(-0.722792\pi\)
−0.644157 + 0.764894i \(0.722792\pi\)
\(242\) − 10.0000i − 0.642824i
\(243\) − 1.00000i − 0.0641500i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) − 14.0000i − 0.890799i
\(248\) 5.00000i 0.317500i
\(249\) 14.0000 0.887214
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) − 5.00000i − 0.314970i
\(253\) − 2.00000i − 0.125739i
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 18.0000i − 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) − 9.00000i − 0.560316i
\(259\) −15.0000 −0.932055
\(260\) 0 0
\(261\) −10.0000 −0.618984
\(262\) − 4.00000i − 0.247121i
\(263\) 17.0000i 1.04826i 0.851637 + 0.524132i \(0.175610\pi\)
−0.851637 + 0.524132i \(0.824390\pi\)
\(264\) 1.00000 0.0615457
\(265\) 0 0
\(266\) 35.0000 2.14599
\(267\) 4.00000i 0.244796i
\(268\) 13.0000i 0.794101i
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −6.00000 −0.364474 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(272\) − 1.00000i − 0.0606339i
\(273\) 10.0000i 0.605228i
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) − 23.0000i − 1.38194i −0.722885 0.690968i \(-0.757185\pi\)
0.722885 0.690968i \(-0.242815\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 5.00000 0.299342
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 7.00000i 0.416844i
\(283\) − 14.0000i − 0.832214i −0.909316 0.416107i \(-0.863394\pi\)
0.909316 0.416107i \(-0.136606\pi\)
\(284\) 10.0000 0.593391
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) 50.0000i 2.95141i
\(288\) − 1.00000i − 0.0589256i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) − 4.00000i − 0.234082i
\(293\) − 14.0000i − 0.817889i −0.912559 0.408944i \(-0.865897\pi\)
0.912559 0.408944i \(-0.134103\pi\)
\(294\) −18.0000 −1.04978
\(295\) 0 0
\(296\) −3.00000 −0.174371
\(297\) − 1.00000i − 0.0580259i
\(298\) 2.00000i 0.115857i
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −45.0000 −2.59376
\(302\) − 8.00000i − 0.460348i
\(303\) 7.00000i 0.402139i
\(304\) 7.00000 0.401478
\(305\) 0 0
\(306\) −1.00000 −0.0571662
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) − 5.00000i − 0.284901i
\(309\) 0 0
\(310\) 0 0
\(311\) 26.0000 1.47432 0.737162 0.675716i \(-0.236165\pi\)
0.737162 + 0.675716i \(0.236165\pi\)
\(312\) 2.00000i 0.113228i
\(313\) − 2.00000i − 0.113047i −0.998401 0.0565233i \(-0.981998\pi\)
0.998401 0.0565233i \(-0.0180015\pi\)
\(314\) −16.0000 −0.902932
\(315\) 0 0
\(316\) 3.00000 0.168763
\(317\) 20.0000i 1.12331i 0.827371 + 0.561656i \(0.189836\pi\)
−0.827371 + 0.561656i \(0.810164\pi\)
\(318\) − 11.0000i − 0.616849i
\(319\) −10.0000 −0.559893
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 10.0000i 0.557278i
\(323\) − 7.00000i − 0.389490i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −16.0000 −0.886158
\(327\) 19.0000i 1.05070i
\(328\) 10.0000i 0.552158i
\(329\) 35.0000 1.92961
\(330\) 0 0
\(331\) 7.00000 0.384755 0.192377 0.981321i \(-0.438380\pi\)
0.192377 + 0.981321i \(0.438380\pi\)
\(332\) − 14.0000i − 0.768350i
\(333\) 3.00000i 0.164399i
\(334\) −6.00000 −0.328305
\(335\) 0 0
\(336\) −5.00000 −0.272772
\(337\) − 8.00000i − 0.435788i −0.975972 0.217894i \(-0.930081\pi\)
0.975972 0.217894i \(-0.0699187\pi\)
\(338\) 9.00000i 0.489535i
\(339\) −3.00000 −0.162938
\(340\) 0 0
\(341\) 5.00000 0.270765
\(342\) − 7.00000i − 0.378517i
\(343\) 55.0000i 2.96972i
\(344\) −9.00000 −0.485247
\(345\) 0 0
\(346\) 20.0000 1.07521
\(347\) − 5.00000i − 0.268414i −0.990953 0.134207i \(-0.957151\pi\)
0.990953 0.134207i \(-0.0428487\pi\)
\(348\) 10.0000i 0.536056i
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) − 1.00000i − 0.0533002i
\(353\) 2.00000i 0.106449i 0.998583 + 0.0532246i \(0.0169499\pi\)
−0.998583 + 0.0532246i \(0.983050\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.00000 0.212000
\(357\) 5.00000i 0.264628i
\(358\) 12.0000i 0.634220i
\(359\) 3.00000 0.158334 0.0791670 0.996861i \(-0.474774\pi\)
0.0791670 + 0.996861i \(0.474774\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 17.0000i 0.893500i
\(363\) 10.0000i 0.524864i
\(364\) 10.0000 0.524142
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) 5.00000i 0.260998i 0.991448 + 0.130499i \(0.0416579\pi\)
−0.991448 + 0.130499i \(0.958342\pi\)
\(368\) 2.00000i 0.104257i
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) −55.0000 −2.85546
\(372\) − 5.00000i − 0.259238i
\(373\) 26.0000i 1.34623i 0.739538 + 0.673114i \(0.235044\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(374\) −1.00000 −0.0517088
\(375\) 0 0
\(376\) 7.00000 0.360997
\(377\) − 20.0000i − 1.03005i
\(378\) 5.00000i 0.257172i
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 25.0000i 1.27911i
\(383\) 8.00000i 0.408781i 0.978889 + 0.204390i \(0.0655212\pi\)
−0.978889 + 0.204390i \(0.934479\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 9.00000i 0.457496i
\(388\) 6.00000i 0.304604i
\(389\) 15.0000 0.760530 0.380265 0.924878i \(-0.375833\pi\)
0.380265 + 0.924878i \(0.375833\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 18.0000i 0.909137i
\(393\) 4.00000i 0.201773i
\(394\) −8.00000 −0.403034
\(395\) 0 0
\(396\) −1.00000 −0.0502519
\(397\) − 3.00000i − 0.150566i −0.997162 0.0752828i \(-0.976014\pi\)
0.997162 0.0752828i \(-0.0239860\pi\)
\(398\) − 7.00000i − 0.350878i
\(399\) −35.0000 −1.75219
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) − 13.0000i − 0.648381i
\(403\) 10.0000i 0.498135i
\(404\) 7.00000 0.348263
\(405\) 0 0
\(406\) 50.0000 2.48146
\(407\) 3.00000i 0.148704i
\(408\) 1.00000i 0.0495074i
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 2.00000 0.0982946
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) − 20.0000i − 0.979404i
\(418\) − 7.00000i − 0.342381i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −30.0000 −1.46211 −0.731055 0.682318i \(-0.760972\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) − 14.0000i − 0.681509i
\(423\) − 7.00000i − 0.340352i
\(424\) −11.0000 −0.534207
\(425\) 0 0
\(426\) −10.0000 −0.484502
\(427\) − 10.0000i − 0.483934i
\(428\) − 9.00000i − 0.435031i
\(429\) 2.00000 0.0965609
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 35.0000i − 1.68199i −0.541041 0.840996i \(-0.681970\pi\)
0.541041 0.840996i \(-0.318030\pi\)
\(434\) −25.0000 −1.20004
\(435\) 0 0
\(436\) 19.0000 0.909935
\(437\) 14.0000i 0.669711i
\(438\) 4.00000i 0.191127i
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) − 2.00000i − 0.0951303i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 3.00000 0.142374
\(445\) 0 0
\(446\) −10.0000 −0.473514
\(447\) − 2.00000i − 0.0945968i
\(448\) 5.00000i 0.236228i
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 3.00000i 0.141108i
\(453\) 8.00000i 0.375873i
\(454\) 1.00000 0.0469323
\(455\) 0 0
\(456\) −7.00000 −0.327805
\(457\) 17.0000i 0.795226i 0.917553 + 0.397613i \(0.130161\pi\)
−0.917553 + 0.397613i \(0.869839\pi\)
\(458\) 12.0000i 0.560723i
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 35.0000 1.63011 0.815056 0.579382i \(-0.196706\pi\)
0.815056 + 0.579382i \(0.196706\pi\)
\(462\) 5.00000i 0.232621i
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 10.0000 0.464238
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) − 6.00000i − 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) −65.0000 −3.00142
\(470\) 0 0
\(471\) 16.0000 0.737241
\(472\) 0 0
\(473\) 9.00000i 0.413820i
\(474\) −3.00000 −0.137795
\(475\) 0 0
\(476\) 5.00000 0.229175
\(477\) 11.0000i 0.503655i
\(478\) − 15.0000i − 0.686084i
\(479\) 22.0000 1.00521 0.502603 0.864517i \(-0.332376\pi\)
0.502603 + 0.864517i \(0.332376\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) − 20.0000i − 0.910975i
\(483\) − 10.0000i − 0.455016i
\(484\) 10.0000 0.454545
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) − 8.00000i − 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) − 2.00000i − 0.0905357i
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) − 10.0000i − 0.450835i
\(493\) − 10.0000i − 0.450377i
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) −5.00000 −0.224507
\(497\) 50.0000i 2.24281i
\(498\) 14.0000i 0.627355i
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 0 0
\(501\) 6.00000 0.268060
\(502\) 2.00000i 0.0892644i
\(503\) − 22.0000i − 0.980932i −0.871460 0.490466i \(-0.836827\pi\)
0.871460 0.490466i \(-0.163173\pi\)
\(504\) 5.00000 0.222718
\(505\) 0 0
\(506\) 2.00000 0.0889108
\(507\) − 9.00000i − 0.399704i
\(508\) − 4.00000i − 0.177471i
\(509\) 37.0000 1.64000 0.819998 0.572366i \(-0.193974\pi\)
0.819998 + 0.572366i \(0.193974\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 1.00000i 0.0441942i
\(513\) 7.00000i 0.309058i
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 9.00000 0.396203
\(517\) − 7.00000i − 0.307860i
\(518\) − 15.0000i − 0.659062i
\(519\) −20.0000 −0.877903
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) − 10.0000i − 0.437688i
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −17.0000 −0.741235
\(527\) 5.00000i 0.217803i
\(528\) 1.00000i 0.0435194i
\(529\) 19.0000 0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 35.0000i 1.51744i
\(533\) 20.0000i 0.866296i
\(534\) −4.00000 −0.173097
\(535\) 0 0
\(536\) −13.0000 −0.561514
\(537\) − 12.0000i − 0.517838i
\(538\) − 6.00000i − 0.258678i
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) −39.0000 −1.67674 −0.838370 0.545101i \(-0.816491\pi\)
−0.838370 + 0.545101i \(0.816491\pi\)
\(542\) − 6.00000i − 0.257722i
\(543\) − 17.0000i − 0.729540i
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) −10.0000 −0.427960
\(547\) − 38.0000i − 1.62476i −0.583127 0.812381i \(-0.698171\pi\)
0.583127 0.812381i \(-0.301829\pi\)
\(548\) 12.0000i 0.512615i
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 70.0000 2.98210
\(552\) − 2.00000i − 0.0851257i
\(553\) 15.0000i 0.637865i
\(554\) 23.0000 0.977176
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 29.0000i 1.22877i 0.789007 + 0.614385i \(0.210596\pi\)
−0.789007 + 0.614385i \(0.789404\pi\)
\(558\) 5.00000i 0.211667i
\(559\) −18.0000 −0.761319
\(560\) 0 0
\(561\) 1.00000 0.0422200
\(562\) 22.0000i 0.928014i
\(563\) 12.0000i 0.505740i 0.967500 + 0.252870i \(0.0813744\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(564\) −7.00000 −0.294753
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) − 5.00000i − 0.209980i
\(568\) 10.0000i 0.419591i
\(569\) 36.0000 1.50920 0.754599 0.656186i \(-0.227831\pi\)
0.754599 + 0.656186i \(0.227831\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) − 2.00000i − 0.0836242i
\(573\) − 25.0000i − 1.04439i
\(574\) −50.0000 −2.08696
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 39.0000i 1.62359i 0.583942 + 0.811796i \(0.301510\pi\)
−0.583942 + 0.811796i \(0.698490\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) 70.0000 2.90409
\(582\) − 6.00000i − 0.248708i
\(583\) 11.0000i 0.455573i
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) − 26.0000i − 1.07313i −0.843857 0.536567i \(-0.819721\pi\)
0.843857 0.536567i \(-0.180279\pi\)
\(588\) − 18.0000i − 0.742307i
\(589\) −35.0000 −1.44215
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) − 3.00000i − 0.123299i
\(593\) 12.0000i 0.492781i 0.969171 + 0.246390i \(0.0792446\pi\)
−0.969171 + 0.246390i \(0.920755\pi\)
\(594\) 1.00000 0.0410305
\(595\) 0 0
\(596\) −2.00000 −0.0819232
\(597\) 7.00000i 0.286491i
\(598\) 4.00000i 0.163572i
\(599\) −33.0000 −1.34834 −0.674172 0.738575i \(-0.735499\pi\)
−0.674172 + 0.738575i \(0.735499\pi\)
\(600\) 0 0
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) − 45.0000i − 1.83406i
\(603\) 13.0000i 0.529401i
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) −7.00000 −0.284356
\(607\) − 28.0000i − 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) 7.00000i 0.283887i
\(609\) −50.0000 −2.02610
\(610\) 0 0
\(611\) 14.0000 0.566379
\(612\) − 1.00000i − 0.0404226i
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) 5.00000 0.201456
\(617\) 9.00000i 0.362326i 0.983453 + 0.181163i \(0.0579862\pi\)
−0.983453 + 0.181163i \(0.942014\pi\)
\(618\) 0 0
\(619\) 16.0000 0.643094 0.321547 0.946894i \(-0.395797\pi\)
0.321547 + 0.946894i \(0.395797\pi\)
\(620\) 0 0
\(621\) −2.00000 −0.0802572
\(622\) 26.0000i 1.04251i
\(623\) 20.0000i 0.801283i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 7.00000i 0.279553i
\(628\) − 16.0000i − 0.638470i
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 3.00000i 0.119334i
\(633\) 14.0000i 0.556450i
\(634\) −20.0000 −0.794301
\(635\) 0 0
\(636\) 11.0000 0.436178
\(637\) 36.0000i 1.42637i
\(638\) − 10.0000i − 0.395904i
\(639\) 10.0000 0.395594
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 9.00000i 0.355202i
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) −10.0000 −0.394055
\(645\) 0 0
\(646\) 7.00000 0.275411
\(647\) − 32.0000i − 1.25805i −0.777385 0.629025i \(-0.783454\pi\)
0.777385 0.629025i \(-0.216546\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) 0 0
\(650\) 0 0
\(651\) 25.0000 0.979827
\(652\) − 16.0000i − 0.626608i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) −19.0000 −0.742959
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) − 4.00000i − 0.156055i
\(658\) 35.0000i 1.36444i
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) 7.00000i 0.272063i
\(663\) 2.00000i 0.0776736i
\(664\) 14.0000 0.543305
\(665\) 0 0
\(666\) −3.00000 −0.116248
\(667\) 20.0000i 0.774403i
\(668\) − 6.00000i − 0.232147i
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) −2.00000 −0.0772091
\(672\) − 5.00000i − 0.192879i
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) − 36.0000i − 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) − 3.00000i − 0.115214i
\(679\) −30.0000 −1.15129
\(680\) 0 0
\(681\) −1.00000 −0.0383201
\(682\) 5.00000i 0.191460i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 7.00000 0.267652
\(685\) 0 0
\(686\) −55.0000 −2.09991
\(687\) − 12.0000i − 0.457829i
\(688\) − 9.00000i − 0.343122i
\(689\) −22.0000 −0.838133
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 20.0000i 0.760286i
\(693\) − 5.00000i − 0.189934i
\(694\) 5.00000 0.189797
\(695\) 0 0
\(696\) −10.0000 −0.379049
\(697\) 10.0000i 0.378777i
\(698\) 2.00000i 0.0757011i
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 2.00000i 0.0754851i
\(703\) − 21.0000i − 0.792030i
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −2.00000 −0.0752710
\(707\) 35.0000i 1.31631i
\(708\) 0 0
\(709\) 17.0000 0.638448 0.319224 0.947679i \(-0.396578\pi\)
0.319224 + 0.947679i \(0.396578\pi\)
\(710\) 0 0
\(711\) 3.00000 0.112509
\(712\) 4.00000i 0.149906i
\(713\) − 10.0000i − 0.374503i
\(714\) −5.00000 −0.187120
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 15.0000i 0.560185i
\(718\) 3.00000i 0.111959i
\(719\) 2.00000 0.0745874 0.0372937 0.999304i \(-0.488126\pi\)
0.0372937 + 0.999304i \(0.488126\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 30.0000i 1.11648i
\(723\) 20.0000i 0.743808i
\(724\) −17.0000 −0.631800
\(725\) 0 0
\(726\) −10.0000 −0.371135
\(727\) − 26.0000i − 0.964287i −0.876092 0.482143i \(-0.839858\pi\)
0.876092 0.482143i \(-0.160142\pi\)
\(728\) 10.0000i 0.370625i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −9.00000 −0.332877
\(732\) 2.00000i 0.0739221i
\(733\) 36.0000i 1.32969i 0.746981 + 0.664845i \(0.231502\pi\)
−0.746981 + 0.664845i \(0.768498\pi\)
\(734\) −5.00000 −0.184553
\(735\) 0 0
\(736\) −2.00000 −0.0737210
\(737\) 13.0000i 0.478861i
\(738\) 10.0000i 0.368105i
\(739\) 51.0000 1.87607 0.938033 0.346547i \(-0.112646\pi\)
0.938033 + 0.346547i \(0.112646\pi\)
\(740\) 0 0
\(741\) −14.0000 −0.514303
\(742\) − 55.0000i − 2.01911i
\(743\) 34.0000i 1.24734i 0.781688 + 0.623670i \(0.214359\pi\)
−0.781688 + 0.623670i \(0.785641\pi\)
\(744\) 5.00000 0.183309
\(745\) 0 0
\(746\) −26.0000 −0.951928
\(747\) − 14.0000i − 0.512233i
\(748\) − 1.00000i − 0.0365636i
\(749\) 45.0000 1.64426
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) 7.00000i 0.255264i
\(753\) − 2.00000i − 0.0728841i
\(754\) 20.0000 0.728357
\(755\) 0 0
\(756\) −5.00000 −0.181848
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) − 20.0000i − 0.726433i
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) −36.0000 −1.30500 −0.652499 0.757789i \(-0.726280\pi\)
−0.652499 + 0.757789i \(0.726280\pi\)
\(762\) 4.00000i 0.144905i
\(763\) 95.0000i 3.43923i
\(764\) −25.0000 −0.904468
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 0 0
\(768\) − 1.00000i − 0.0360844i
\(769\) 13.0000 0.468792 0.234396 0.972141i \(-0.424689\pi\)
0.234396 + 0.972141i \(0.424689\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 24.0000i 0.863779i
\(773\) − 6.00000i − 0.215805i −0.994161 0.107903i \(-0.965587\pi\)
0.994161 0.107903i \(-0.0344134\pi\)
\(774\) −9.00000 −0.323498
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 15.0000i 0.538122i
\(778\) 15.0000i 0.537776i
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) 2.00000i 0.0715199i
\(783\) 10.0000i 0.357371i
\(784\) −18.0000 −0.642857
\(785\) 0 0
\(786\) −4.00000 −0.142675
\(787\) − 18.0000i − 0.641631i −0.947142 0.320815i \(-0.896043\pi\)
0.947142 0.320815i \(-0.103957\pi\)
\(788\) − 8.00000i − 0.284988i
\(789\) 17.0000 0.605216
\(790\) 0 0
\(791\) −15.0000 −0.533339
\(792\) − 1.00000i − 0.0355335i
\(793\) − 4.00000i − 0.142044i
\(794\) 3.00000 0.106466
\(795\) 0 0
\(796\) 7.00000 0.248108
\(797\) 41.0000i 1.45229i 0.687539 + 0.726147i \(0.258691\pi\)
−0.687539 + 0.726147i \(0.741309\pi\)
\(798\) − 35.0000i − 1.23899i
\(799\) 7.00000 0.247642
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) 30.0000i 1.05934i
\(803\) − 4.00000i − 0.141157i
\(804\) 13.0000 0.458475
\(805\) 0 0
\(806\) −10.0000 −0.352235
\(807\) 6.00000i 0.211210i
\(808\) 7.00000i 0.246259i
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 50.0000i 1.75466i
\(813\) 6.00000i 0.210429i
\(814\) −3.00000 −0.105150
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) − 63.0000i − 2.20409i
\(818\) 26.0000i 0.909069i
\(819\) 10.0000 0.349428
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) − 12.0000i − 0.418548i
\(823\) − 4.00000i − 0.139431i −0.997567 0.0697156i \(-0.977791\pi\)
0.997567 0.0697156i \(-0.0222092\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 23.0000i − 0.799788i −0.916561 0.399894i \(-0.869047\pi\)
0.916561 0.399894i \(-0.130953\pi\)
\(828\) 2.00000i 0.0695048i
\(829\) 22.0000 0.764092 0.382046 0.924143i \(-0.375220\pi\)
0.382046 + 0.924143i \(0.375220\pi\)
\(830\) 0 0
\(831\) −23.0000 −0.797861
\(832\) 2.00000i 0.0693375i
\(833\) 18.0000i 0.623663i
\(834\) 20.0000 0.692543
\(835\) 0 0
\(836\) 7.00000 0.242100
\(837\) − 5.00000i − 0.172825i
\(838\) 0 0
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) − 30.0000i − 1.03387i
\(843\) − 22.0000i − 0.757720i
\(844\) 14.0000 0.481900
\(845\) 0 0
\(846\) 7.00000 0.240665
\(847\) 50.0000i 1.71802i
\(848\) − 11.0000i − 0.377742i
\(849\) −14.0000 −0.480479
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) − 10.0000i − 0.342594i
\(853\) 5.00000i 0.171197i 0.996330 + 0.0855984i \(0.0272802\pi\)
−0.996330 + 0.0855984i \(0.972720\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) 9.00000 0.307614
\(857\) − 23.0000i − 0.785665i −0.919610 0.392833i \(-0.871495\pi\)
0.919610 0.392833i \(-0.128505\pi\)
\(858\) 2.00000i 0.0682789i
\(859\) 47.0000 1.60362 0.801810 0.597580i \(-0.203871\pi\)
0.801810 + 0.597580i \(0.203871\pi\)
\(860\) 0 0
\(861\) 50.0000 1.70400
\(862\) − 16.0000i − 0.544962i
\(863\) − 43.0000i − 1.46374i −0.681446 0.731869i \(-0.738649\pi\)
0.681446 0.731869i \(-0.261351\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 35.0000 1.18935
\(867\) 1.00000i 0.0339618i
\(868\) − 25.0000i − 0.848555i
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) −26.0000 −0.880976
\(872\) 19.0000i 0.643421i
\(873\) 6.00000i 0.203069i
\(874\) −14.0000 −0.473557
\(875\) 0 0
\(876\) −4.00000 −0.135147
\(877\) − 50.0000i − 1.68838i −0.536044 0.844190i \(-0.680082\pi\)
0.536044 0.844190i \(-0.319918\pi\)
\(878\) 24.0000i 0.809961i
\(879\) −14.0000 −0.472208
\(880\) 0 0
\(881\) 3.00000 0.101073 0.0505363 0.998722i \(-0.483907\pi\)
0.0505363 + 0.998722i \(0.483907\pi\)
\(882\) 18.0000i 0.606092i
\(883\) 44.0000i 1.48072i 0.672212 + 0.740359i \(0.265344\pi\)
−0.672212 + 0.740359i \(0.734656\pi\)
\(884\) 2.00000 0.0672673
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000i 0.805841i 0.915235 + 0.402921i \(0.132005\pi\)
−0.915235 + 0.402921i \(0.867995\pi\)
\(888\) 3.00000i 0.100673i
\(889\) 20.0000 0.670778
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) − 10.0000i − 0.334825i
\(893\) 49.0000i 1.63972i
\(894\) 2.00000 0.0668900
\(895\) 0 0
\(896\) −5.00000 −0.167038
\(897\) − 4.00000i − 0.133556i
\(898\) − 9.00000i − 0.300334i
\(899\) −50.0000 −1.66759
\(900\) 0 0
\(901\) −11.0000 −0.366463
\(902\) 10.0000i 0.332964i
\(903\) 45.0000i 1.49751i
\(904\) −3.00000 −0.0997785
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 38.0000i 1.26177i 0.775877 + 0.630885i \(0.217308\pi\)
−0.775877 + 0.630885i \(0.782692\pi\)
\(908\) 1.00000i 0.0331862i
\(909\) 7.00000 0.232175
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) − 7.00000i − 0.231793i
\(913\) − 14.0000i − 0.463332i
\(914\) −17.0000 −0.562310
\(915\) 0 0
\(916\) −12.0000 −0.396491
\(917\) 20.0000i 0.660458i
\(918\) 1.00000i 0.0330049i
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 35.0000i 1.15266i
\(923\) 20.0000i 0.658308i
\(924\) −5.00000 −0.164488
\(925\) 0 0
\(926\) −16.0000 −0.525793
\(927\) 0 0
\(928\) 10.0000i 0.328266i
\(929\) 9.00000 0.295280 0.147640 0.989041i \(-0.452832\pi\)
0.147640 + 0.989041i \(0.452832\pi\)
\(930\) 0 0
\(931\) −126.000 −4.12948
\(932\) 18.0000i 0.589610i
\(933\) − 26.0000i − 0.851202i
\(934\) 6.00000 0.196326
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) − 26.0000i − 0.849383i −0.905338 0.424691i \(-0.860383\pi\)
0.905338 0.424691i \(-0.139617\pi\)
\(938\) − 65.0000i − 2.12233i
\(939\) −2.00000 −0.0652675
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 16.0000i 0.521308i
\(943\) − 20.0000i − 0.651290i
\(944\) 0 0
\(945\) 0 0
\(946\) −9.00000 −0.292615
\(947\) − 41.0000i − 1.33232i −0.745808 0.666160i \(-0.767937\pi\)
0.745808 0.666160i \(-0.232063\pi\)
\(948\) − 3.00000i − 0.0974355i
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 20.0000 0.648544
\(952\) 5.00000i 0.162051i
\(953\) − 54.0000i − 1.74923i −0.484817 0.874616i \(-0.661114\pi\)
0.484817 0.874616i \(-0.338886\pi\)
\(954\) −11.0000 −0.356138
\(955\) 0 0
\(956\) 15.0000 0.485135
\(957\) 10.0000i 0.323254i
\(958\) 22.0000i 0.710788i
\(959\) −60.0000 −1.93750
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) − 6.00000i − 0.193448i
\(963\) − 9.00000i − 0.290021i
\(964\) 20.0000 0.644157
\(965\) 0 0
\(966\) 10.0000 0.321745
\(967\) 16.0000i 0.514525i 0.966342 + 0.257263i \(0.0828206\pi\)
−0.966342 + 0.257263i \(0.917179\pi\)
\(968\) 10.0000i 0.321412i
\(969\) −7.00000 −0.224872
\(970\) 0 0
\(971\) 22.0000 0.706014 0.353007 0.935621i \(-0.385159\pi\)
0.353007 + 0.935621i \(0.385159\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 100.000i − 3.20585i
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 16.0000i 0.511624i
\(979\) 4.00000 0.127841
\(980\) 0 0
\(981\) 19.0000 0.606623
\(982\) 12.0000i 0.382935i
\(983\) − 10.0000i − 0.318950i −0.987202 0.159475i \(-0.949020\pi\)
0.987202 0.159475i \(-0.0509802\pi\)
\(984\) 10.0000 0.318788
\(985\) 0 0
\(986\) 10.0000 0.318465
\(987\) − 35.0000i − 1.11406i
\(988\) 14.0000i 0.445399i
\(989\) 18.0000 0.572367
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) − 5.00000i − 0.158750i
\(993\) − 7.00000i − 0.222138i
\(994\) −50.0000 −1.58590
\(995\) 0 0
\(996\) −14.0000 −0.443607
\(997\) − 43.0000i − 1.36182i −0.732365 0.680912i \(-0.761584\pi\)
0.732365 0.680912i \(-0.238416\pi\)
\(998\) − 22.0000i − 0.696398i
\(999\) 3.00000 0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.d.p.2449.2 2
5.2 odd 4 2550.2.a.g.1.1 1
5.3 odd 4 2550.2.a.ba.1.1 yes 1
5.4 even 2 inner 2550.2.d.p.2449.1 2
15.2 even 4 7650.2.a.cp.1.1 1
15.8 even 4 7650.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2550.2.a.g.1.1 1 5.2 odd 4
2550.2.a.ba.1.1 yes 1 5.3 odd 4
2550.2.d.p.2449.1 2 5.4 even 2 inner
2550.2.d.p.2449.2 2 1.1 even 1 trivial
7650.2.a.b.1.1 1 15.8 even 4
7650.2.a.cp.1.1 1 15.2 even 4