Properties

Label 2550.2.d.h.2449.1
Level $2550$
Weight $2$
Character 2550.2449
Analytic conductor $20.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(2449,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2550.2449
Dual form 2550.2.d.h.2449.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +4.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +4.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +2.00000 q^{11} +1.00000i q^{12} -2.00000i q^{13} +4.00000 q^{14} +1.00000 q^{16} -1.00000i q^{17} +1.00000i q^{18} -8.00000 q^{19} +4.00000 q^{21} -2.00000i q^{22} -1.00000i q^{23} +1.00000 q^{24} -2.00000 q^{26} +1.00000i q^{27} -4.00000i q^{28} +4.00000 q^{29} -2.00000 q^{31} -1.00000i q^{32} -2.00000i q^{33} -1.00000 q^{34} +1.00000 q^{36} +3.00000i q^{37} +8.00000i q^{38} -2.00000 q^{39} -1.00000 q^{41} -4.00000i q^{42} +6.00000i q^{43} -2.00000 q^{44} -1.00000 q^{46} +4.00000i q^{47} -1.00000i q^{48} -9.00000 q^{49} -1.00000 q^{51} +2.00000i q^{52} +13.0000i q^{53} +1.00000 q^{54} -4.00000 q^{56} +8.00000i q^{57} -4.00000i q^{58} -15.0000 q^{59} +5.00000 q^{61} +2.00000i q^{62} -4.00000i q^{63} -1.00000 q^{64} -2.00000 q^{66} -10.0000i q^{67} +1.00000i q^{68} -1.00000 q^{69} -1.00000 q^{71} -1.00000i q^{72} +16.0000i q^{73} +3.00000 q^{74} +8.00000 q^{76} +8.00000i q^{77} +2.00000i q^{78} -12.0000 q^{79} +1.00000 q^{81} +1.00000i q^{82} +11.0000i q^{83} -4.00000 q^{84} +6.00000 q^{86} -4.00000i q^{87} +2.00000i q^{88} +2.00000 q^{89} +8.00000 q^{91} +1.00000i q^{92} +2.00000i q^{93} +4.00000 q^{94} -1.00000 q^{96} +9.00000i q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 4 q^{11} + 8 q^{14} + 2 q^{16} - 16 q^{19} + 8 q^{21} + 2 q^{24} - 4 q^{26} + 8 q^{29} - 4 q^{31} - 2 q^{34} + 2 q^{36} - 4 q^{39} - 2 q^{41} - 4 q^{44} - 2 q^{46} - 18 q^{49} - 2 q^{51} + 2 q^{54} - 8 q^{56} - 30 q^{59} + 10 q^{61} - 2 q^{64} - 4 q^{66} - 2 q^{69} - 2 q^{71} + 6 q^{74} + 16 q^{76} - 24 q^{79} + 2 q^{81} - 8 q^{84} + 12 q^{86} + 4 q^{89} + 16 q^{91} + 8 q^{94} - 2 q^{96} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2550\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(851\) \(1327\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 1.00000i − 0.242536i
\(18\) 1.00000i 0.235702i
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) − 2.00000i − 0.426401i
\(23\) − 1.00000i − 0.208514i −0.994550 0.104257i \(-0.966753\pi\)
0.994550 0.104257i \(-0.0332465\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 1.00000i 0.192450i
\(28\) − 4.00000i − 0.755929i
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 2.00000i − 0.348155i
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 3.00000i 0.493197i 0.969118 + 0.246598i \(0.0793129\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(38\) 8.00000i 1.29777i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −1.00000 −0.156174 −0.0780869 0.996947i \(-0.524881\pi\)
−0.0780869 + 0.996947i \(0.524881\pi\)
\(42\) − 4.00000i − 0.617213i
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −1.00000 −0.147442
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 2.00000i 0.277350i
\(53\) 13.0000i 1.78569i 0.450367 + 0.892844i \(0.351293\pi\)
−0.450367 + 0.892844i \(0.648707\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 8.00000i 1.05963i
\(58\) − 4.00000i − 0.525226i
\(59\) −15.0000 −1.95283 −0.976417 0.215894i \(-0.930733\pi\)
−0.976417 + 0.215894i \(0.930733\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 2.00000i 0.254000i
\(63\) − 4.00000i − 0.503953i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) − 10.0000i − 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 1.00000i 0.121268i
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −1.00000 −0.118678 −0.0593391 0.998238i \(-0.518899\pi\)
−0.0593391 + 0.998238i \(0.518899\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) 16.0000i 1.87266i 0.351123 + 0.936329i \(0.385800\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 8.00000i 0.911685i
\(78\) 2.00000i 0.226455i
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.00000i 0.110432i
\(83\) 11.0000i 1.20741i 0.797209 + 0.603703i \(0.206309\pi\)
−0.797209 + 0.603703i \(0.793691\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) − 4.00000i − 0.428845i
\(88\) 2.00000i 0.213201i
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 1.00000i 0.104257i
\(93\) 2.00000i 0.207390i
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 9.00000i 0.909137i
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 1.00000i 0.0990148i
\(103\) − 3.00000i − 0.295599i −0.989017 0.147799i \(-0.952781\pi\)
0.989017 0.147799i \(-0.0472190\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 13.0000 1.26267
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 3.00000 0.284747
\(112\) 4.00000i 0.377964i
\(113\) 15.0000i 1.41108i 0.708669 + 0.705541i \(0.249296\pi\)
−0.708669 + 0.705541i \(0.750704\pi\)
\(114\) 8.00000 0.749269
\(115\) 0 0
\(116\) −4.00000 −0.371391
\(117\) 2.00000i 0.184900i
\(118\) 15.0000i 1.38086i
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) − 5.00000i − 0.452679i
\(123\) 1.00000i 0.0901670i
\(124\) 2.00000 0.179605
\(125\) 0 0
\(126\) −4.00000 −0.356348
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 2.00000i 0.174078i
\(133\) − 32.0000i − 2.77475i
\(134\) −10.0000 −0.863868
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 1.00000i 0.0851257i
\(139\) −1.00000 −0.0848189 −0.0424094 0.999100i \(-0.513503\pi\)
−0.0424094 + 0.999100i \(0.513503\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) 1.00000i 0.0839181i
\(143\) − 4.00000i − 0.334497i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 16.0000 1.32417
\(147\) 9.00000i 0.742307i
\(148\) − 3.00000i − 0.246598i
\(149\) −1.00000 −0.0819232 −0.0409616 0.999161i \(-0.513042\pi\)
−0.0409616 + 0.999161i \(0.513042\pi\)
\(150\) 0 0
\(151\) 1.00000 0.0813788 0.0406894 0.999172i \(-0.487045\pi\)
0.0406894 + 0.999172i \(0.487045\pi\)
\(152\) − 8.00000i − 0.648886i
\(153\) 1.00000i 0.0808452i
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) − 14.0000i − 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 12.0000i 0.954669i
\(159\) 13.0000 1.03097
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) − 1.00000i − 0.0785674i
\(163\) 7.00000i 0.548282i 0.961689 + 0.274141i \(0.0883936\pi\)
−0.961689 + 0.274141i \(0.911606\pi\)
\(164\) 1.00000 0.0780869
\(165\) 0 0
\(166\) 11.0000 0.853766
\(167\) − 24.0000i − 1.85718i −0.371113 0.928588i \(-0.621024\pi\)
0.371113 0.928588i \(-0.378976\pi\)
\(168\) 4.00000i 0.308607i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) − 6.00000i − 0.457496i
\(173\) − 8.00000i − 0.608229i −0.952636 0.304114i \(-0.901639\pi\)
0.952636 0.304114i \(-0.0983605\pi\)
\(174\) −4.00000 −0.303239
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) 15.0000i 1.12747i
\(178\) − 2.00000i − 0.149906i
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) − 8.00000i − 0.592999i
\(183\) − 5.00000i − 0.369611i
\(184\) 1.00000 0.0737210
\(185\) 0 0
\(186\) 2.00000 0.146647
\(187\) − 2.00000i − 0.146254i
\(188\) − 4.00000i − 0.291730i
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 24.0000i − 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 2.00000i 0.142134i
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) 10.0000i 0.703598i
\(203\) 16.0000i 1.12298i
\(204\) 1.00000 0.0700140
\(205\) 0 0
\(206\) −3.00000 −0.209020
\(207\) 1.00000i 0.0695048i
\(208\) − 2.00000i − 0.138675i
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) − 13.0000i − 0.892844i
\(213\) 1.00000i 0.0685189i
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 8.00000i − 0.543075i
\(218\) − 2.00000i − 0.135457i
\(219\) 16.0000 1.08118
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) − 3.00000i − 0.201347i
\(223\) − 17.0000i − 1.13840i −0.822198 0.569202i \(-0.807252\pi\)
0.822198 0.569202i \(-0.192748\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) 15.0000 0.997785
\(227\) − 22.0000i − 1.46019i −0.683345 0.730096i \(-0.739475\pi\)
0.683345 0.730096i \(-0.260525\pi\)
\(228\) − 8.00000i − 0.529813i
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 4.00000i 0.262613i
\(233\) − 3.00000i − 0.196537i −0.995160 0.0982683i \(-0.968670\pi\)
0.995160 0.0982683i \(-0.0313303\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 15.0000 0.976417
\(237\) 12.0000i 0.779484i
\(238\) − 4.00000i − 0.259281i
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 7.00000i 0.449977i
\(243\) − 1.00000i − 0.0641500i
\(244\) −5.00000 −0.320092
\(245\) 0 0
\(246\) 1.00000 0.0637577
\(247\) 16.0000i 1.01806i
\(248\) − 2.00000i − 0.127000i
\(249\) 11.0000 0.697097
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 4.00000i 0.251976i
\(253\) − 2.00000i − 0.125739i
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) − 6.00000i − 0.373544i
\(259\) −12.0000 −0.745644
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) − 8.00000i − 0.494242i
\(263\) − 4.00000i − 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 2.00000 0.123091
\(265\) 0 0
\(266\) −32.0000 −1.96205
\(267\) − 2.00000i − 0.122398i
\(268\) 10.0000i 0.610847i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −21.0000 −1.27566 −0.637830 0.770178i \(-0.720168\pi\)
−0.637830 + 0.770178i \(0.720168\pi\)
\(272\) − 1.00000i − 0.0606339i
\(273\) − 8.00000i − 0.484182i
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 1.00000 0.0601929
\(277\) 31.0000i 1.86261i 0.364241 + 0.931305i \(0.381328\pi\)
−0.364241 + 0.931305i \(0.618672\pi\)
\(278\) 1.00000i 0.0599760i
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) − 4.00000i − 0.238197i
\(283\) 7.00000i 0.416107i 0.978117 + 0.208053i \(0.0667128\pi\)
−0.978117 + 0.208053i \(0.933287\pi\)
\(284\) 1.00000 0.0593391
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) − 4.00000i − 0.236113i
\(288\) 1.00000i 0.0589256i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) − 16.0000i − 0.936329i
\(293\) 31.0000i 1.81104i 0.424304 + 0.905520i \(0.360519\pi\)
−0.424304 + 0.905520i \(0.639481\pi\)
\(294\) 9.00000 0.524891
\(295\) 0 0
\(296\) −3.00000 −0.174371
\(297\) 2.00000i 0.116052i
\(298\) 1.00000i 0.0579284i
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) − 1.00000i − 0.0575435i
\(303\) 10.0000i 0.574485i
\(304\) −8.00000 −0.458831
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) 22.0000i 1.25561i 0.778372 + 0.627803i \(0.216046\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(308\) − 8.00000i − 0.455842i
\(309\) −3.00000 −0.170664
\(310\) 0 0
\(311\) 5.00000 0.283524 0.141762 0.989901i \(-0.454723\pi\)
0.141762 + 0.989901i \(0.454723\pi\)
\(312\) − 2.00000i − 0.113228i
\(313\) − 20.0000i − 1.13047i −0.824931 0.565233i \(-0.808786\pi\)
0.824931 0.565233i \(-0.191214\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 12.0000 0.675053
\(317\) 26.0000i 1.46031i 0.683284 + 0.730153i \(0.260551\pi\)
−0.683284 + 0.730153i \(0.739449\pi\)
\(318\) − 13.0000i − 0.729004i
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) − 4.00000i − 0.222911i
\(323\) 8.00000i 0.445132i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 7.00000 0.387694
\(327\) − 2.00000i − 0.110600i
\(328\) − 1.00000i − 0.0552158i
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) − 11.0000i − 0.603703i
\(333\) − 3.00000i − 0.164399i
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) − 26.0000i − 1.41631i −0.706057 0.708155i \(-0.749528\pi\)
0.706057 0.708155i \(-0.250472\pi\)
\(338\) − 9.00000i − 0.489535i
\(339\) 15.0000 0.814688
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) − 8.00000i − 0.432590i
\(343\) − 8.00000i − 0.431959i
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) −8.00000 −0.430083
\(347\) 16.0000i 0.858925i 0.903085 + 0.429463i \(0.141297\pi\)
−0.903085 + 0.429463i \(0.858703\pi\)
\(348\) 4.00000i 0.214423i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) − 2.00000i − 0.106600i
\(353\) − 16.0000i − 0.851594i −0.904819 0.425797i \(-0.859994\pi\)
0.904819 0.425797i \(-0.140006\pi\)
\(354\) 15.0000 0.797241
\(355\) 0 0
\(356\) −2.00000 −0.106000
\(357\) − 4.00000i − 0.211702i
\(358\) 9.00000i 0.475665i
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) − 11.0000i − 0.578147i
\(363\) 7.00000i 0.367405i
\(364\) −8.00000 −0.419314
\(365\) 0 0
\(366\) −5.00000 −0.261354
\(367\) 2.00000i 0.104399i 0.998637 + 0.0521996i \(0.0166232\pi\)
−0.998637 + 0.0521996i \(0.983377\pi\)
\(368\) − 1.00000i − 0.0521286i
\(369\) 1.00000 0.0520579
\(370\) 0 0
\(371\) −52.0000 −2.69971
\(372\) − 2.00000i − 0.103695i
\(373\) − 4.00000i − 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) − 8.00000i − 0.412021i
\(378\) 4.00000i 0.205738i
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) − 10.0000i − 0.511645i
\(383\) 20.0000i 1.02195i 0.859595 + 0.510976i \(0.170716\pi\)
−0.859595 + 0.510976i \(0.829284\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −24.0000 −1.22157
\(387\) − 6.00000i − 0.304997i
\(388\) 0 0
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) −1.00000 −0.0505722
\(392\) − 9.00000i − 0.454569i
\(393\) − 8.00000i − 0.403547i
\(394\) 2.00000 0.100759
\(395\) 0 0
\(396\) 2.00000 0.100504
\(397\) − 21.0000i − 1.05396i −0.849878 0.526980i \(-0.823324\pi\)
0.849878 0.526980i \(-0.176676\pi\)
\(398\) 10.0000i 0.501255i
\(399\) −32.0000 −1.60200
\(400\) 0 0
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 10.0000i 0.498755i
\(403\) 4.00000i 0.199254i
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) 16.0000 0.794067
\(407\) 6.00000i 0.297409i
\(408\) − 1.00000i − 0.0495074i
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 3.00000i 0.147799i
\(413\) − 60.0000i − 2.95241i
\(414\) 1.00000 0.0491473
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 1.00000i 0.0489702i
\(418\) 16.0000i 0.782586i
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) −24.0000 −1.16969 −0.584844 0.811146i \(-0.698844\pi\)
−0.584844 + 0.811146i \(0.698844\pi\)
\(422\) − 4.00000i − 0.194717i
\(423\) − 4.00000i − 0.194487i
\(424\) −13.0000 −0.631336
\(425\) 0 0
\(426\) 1.00000 0.0484502
\(427\) 20.0000i 0.967868i
\(428\) − 12.0000i − 0.580042i
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) −28.0000 −1.34871 −0.674356 0.738406i \(-0.735579\pi\)
−0.674356 + 0.738406i \(0.735579\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 14.0000i − 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 8.00000i 0.382692i
\(438\) − 16.0000i − 0.764510i
\(439\) 12.0000 0.572729 0.286364 0.958121i \(-0.407553\pi\)
0.286364 + 0.958121i \(0.407553\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 2.00000i 0.0951303i
\(443\) 39.0000i 1.85295i 0.376361 + 0.926473i \(0.377175\pi\)
−0.376361 + 0.926473i \(0.622825\pi\)
\(444\) −3.00000 −0.142374
\(445\) 0 0
\(446\) −17.0000 −0.804973
\(447\) 1.00000i 0.0472984i
\(448\) − 4.00000i − 0.188982i
\(449\) 42.0000 1.98210 0.991051 0.133482i \(-0.0426157\pi\)
0.991051 + 0.133482i \(0.0426157\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) − 15.0000i − 0.705541i
\(453\) − 1.00000i − 0.0469841i
\(454\) −22.0000 −1.03251
\(455\) 0 0
\(456\) −8.00000 −0.374634
\(457\) − 31.0000i − 1.45012i −0.688686 0.725059i \(-0.741812\pi\)
0.688686 0.725059i \(-0.258188\pi\)
\(458\) − 18.0000i − 0.841085i
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −1.00000 −0.0465746 −0.0232873 0.999729i \(-0.507413\pi\)
−0.0232873 + 0.999729i \(0.507413\pi\)
\(462\) − 8.00000i − 0.372194i
\(463\) − 35.0000i − 1.62659i −0.581853 0.813294i \(-0.697672\pi\)
0.581853 0.813294i \(-0.302328\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) −3.00000 −0.138972
\(467\) 3.00000i 0.138823i 0.997588 + 0.0694117i \(0.0221122\pi\)
−0.997588 + 0.0694117i \(0.977888\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) 40.0000 1.84703
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) − 15.0000i − 0.690431i
\(473\) 12.0000i 0.551761i
\(474\) 12.0000 0.551178
\(475\) 0 0
\(476\) −4.00000 −0.183340
\(477\) − 13.0000i − 0.595229i
\(478\) 6.00000i 0.274434i
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 14.0000i 0.637683i
\(483\) − 4.00000i − 0.182006i
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) − 2.00000i − 0.0906287i −0.998973 0.0453143i \(-0.985571\pi\)
0.998973 0.0453143i \(-0.0144289\pi\)
\(488\) 5.00000i 0.226339i
\(489\) 7.00000 0.316551
\(490\) 0 0
\(491\) 39.0000 1.76005 0.880023 0.474932i \(-0.157527\pi\)
0.880023 + 0.474932i \(0.157527\pi\)
\(492\) − 1.00000i − 0.0450835i
\(493\) − 4.00000i − 0.180151i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) − 4.00000i − 0.179425i
\(498\) − 11.0000i − 0.492922i
\(499\) 41.0000 1.83541 0.917706 0.397260i \(-0.130039\pi\)
0.917706 + 0.397260i \(0.130039\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 4.00000i 0.178529i
\(503\) 41.0000i 1.82810i 0.405602 + 0.914050i \(0.367062\pi\)
−0.405602 + 0.914050i \(0.632938\pi\)
\(504\) 4.00000 0.178174
\(505\) 0 0
\(506\) −2.00000 −0.0889108
\(507\) − 9.00000i − 0.399704i
\(508\) − 16.0000i − 0.709885i
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) −64.0000 −2.83119
\(512\) − 1.00000i − 0.0441942i
\(513\) − 8.00000i − 0.353209i
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) −6.00000 −0.264135
\(517\) 8.00000i 0.351840i
\(518\) 12.0000i 0.527250i
\(519\) −8.00000 −0.351161
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 4.00000i 0.175075i
\(523\) 34.0000i 1.48672i 0.668894 + 0.743358i \(0.266768\pi\)
−0.668894 + 0.743358i \(0.733232\pi\)
\(524\) −8.00000 −0.349482
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 2.00000i 0.0871214i
\(528\) − 2.00000i − 0.0870388i
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 15.0000 0.650945
\(532\) 32.0000i 1.38738i
\(533\) 2.00000i 0.0866296i
\(534\) −2.00000 −0.0865485
\(535\) 0 0
\(536\) 10.0000 0.431934
\(537\) 9.00000i 0.388379i
\(538\) − 6.00000i − 0.258678i
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) 15.0000 0.644900 0.322450 0.946586i \(-0.395494\pi\)
0.322450 + 0.946586i \(0.395494\pi\)
\(542\) 21.0000i 0.902027i
\(543\) − 11.0000i − 0.472055i
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 13.0000i 0.555840i 0.960604 + 0.277920i \(0.0896450\pi\)
−0.960604 + 0.277920i \(0.910355\pi\)
\(548\) − 12.0000i − 0.512615i
\(549\) −5.00000 −0.213395
\(550\) 0 0
\(551\) −32.0000 −1.36325
\(552\) − 1.00000i − 0.0425628i
\(553\) − 48.0000i − 2.04117i
\(554\) 31.0000 1.31706
\(555\) 0 0
\(556\) 1.00000 0.0424094
\(557\) − 31.0000i − 1.31351i −0.754103 0.656756i \(-0.771928\pi\)
0.754103 0.656756i \(-0.228072\pi\)
\(558\) − 2.00000i − 0.0846668i
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) 2.00000i 0.0843649i
\(563\) − 15.0000i − 0.632175i −0.948730 0.316087i \(-0.897631\pi\)
0.948730 0.316087i \(-0.102369\pi\)
\(564\) −4.00000 −0.168430
\(565\) 0 0
\(566\) 7.00000 0.294232
\(567\) 4.00000i 0.167984i
\(568\) − 1.00000i − 0.0419591i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −41.0000 −1.71580 −0.857898 0.513820i \(-0.828230\pi\)
−0.857898 + 0.513820i \(0.828230\pi\)
\(572\) 4.00000i 0.167248i
\(573\) − 10.0000i − 0.417756i
\(574\) −4.00000 −0.166957
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 33.0000i − 1.37381i −0.726748 0.686904i \(-0.758969\pi\)
0.726748 0.686904i \(-0.241031\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) −44.0000 −1.82543
\(582\) 0 0
\(583\) 26.0000i 1.07681i
\(584\) −16.0000 −0.662085
\(585\) 0 0
\(586\) 31.0000 1.28060
\(587\) 25.0000i 1.03186i 0.856631 + 0.515930i \(0.172554\pi\)
−0.856631 + 0.515930i \(0.827446\pi\)
\(588\) − 9.00000i − 0.371154i
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 3.00000i 0.123299i
\(593\) 12.0000i 0.492781i 0.969171 + 0.246390i \(0.0792446\pi\)
−0.969171 + 0.246390i \(0.920755\pi\)
\(594\) 2.00000 0.0820610
\(595\) 0 0
\(596\) 1.00000 0.0409616
\(597\) 10.0000i 0.409273i
\(598\) 2.00000i 0.0817861i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 6.00000 0.244745 0.122373 0.992484i \(-0.460950\pi\)
0.122373 + 0.992484i \(0.460950\pi\)
\(602\) 24.0000i 0.978167i
\(603\) 10.0000i 0.407231i
\(604\) −1.00000 −0.0406894
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) − 34.0000i − 1.38002i −0.723801 0.690009i \(-0.757607\pi\)
0.723801 0.690009i \(-0.242393\pi\)
\(608\) 8.00000i 0.324443i
\(609\) 16.0000 0.648353
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) − 1.00000i − 0.0404226i
\(613\) − 26.0000i − 1.05013i −0.851062 0.525065i \(-0.824041\pi\)
0.851062 0.525065i \(-0.175959\pi\)
\(614\) 22.0000 0.887848
\(615\) 0 0
\(616\) −8.00000 −0.322329
\(617\) 6.00000i 0.241551i 0.992680 + 0.120775i \(0.0385381\pi\)
−0.992680 + 0.120775i \(0.961462\pi\)
\(618\) 3.00000i 0.120678i
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) − 5.00000i − 0.200482i
\(623\) 8.00000i 0.320513i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) −20.0000 −0.799361
\(627\) 16.0000i 0.638978i
\(628\) 14.0000i 0.558661i
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) − 12.0000i − 0.477334i
\(633\) − 4.00000i − 0.158986i
\(634\) 26.0000 1.03259
\(635\) 0 0
\(636\) −13.0000 −0.515484
\(637\) 18.0000i 0.713186i
\(638\) − 8.00000i − 0.316723i
\(639\) 1.00000 0.0395594
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) − 12.0000i − 0.473602i
\(643\) − 29.0000i − 1.14365i −0.820376 0.571824i \(-0.806236\pi\)
0.820376 0.571824i \(-0.193764\pi\)
\(644\) −4.00000 −0.157622
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) − 38.0000i − 1.49393i −0.664861 0.746967i \(-0.731509\pi\)
0.664861 0.746967i \(-0.268491\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −30.0000 −1.17760
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) − 7.00000i − 0.274141i
\(653\) 12.0000i 0.469596i 0.972044 + 0.234798i \(0.0754429\pi\)
−0.972044 + 0.234798i \(0.924557\pi\)
\(654\) −2.00000 −0.0782062
\(655\) 0 0
\(656\) −1.00000 −0.0390434
\(657\) − 16.0000i − 0.624219i
\(658\) 16.0000i 0.623745i
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) 50.0000 1.94477 0.972387 0.233373i \(-0.0749763\pi\)
0.972387 + 0.233373i \(0.0749763\pi\)
\(662\) − 10.0000i − 0.388661i
\(663\) 2.00000i 0.0776736i
\(664\) −11.0000 −0.426883
\(665\) 0 0
\(666\) −3.00000 −0.116248
\(667\) − 4.00000i − 0.154881i
\(668\) 24.0000i 0.928588i
\(669\) −17.0000 −0.657258
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) − 4.00000i − 0.154303i
\(673\) 28.0000i 1.07932i 0.841883 + 0.539660i \(0.181447\pi\)
−0.841883 + 0.539660i \(0.818553\pi\)
\(674\) −26.0000 −1.00148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) − 12.0000i − 0.461197i −0.973049 0.230599i \(-0.925932\pi\)
0.973049 0.230599i \(-0.0740685\pi\)
\(678\) − 15.0000i − 0.576072i
\(679\) 0 0
\(680\) 0 0
\(681\) −22.0000 −0.843042
\(682\) 4.00000i 0.153168i
\(683\) 6.00000i 0.229584i 0.993390 + 0.114792i \(0.0366201\pi\)
−0.993390 + 0.114792i \(0.963380\pi\)
\(684\) −8.00000 −0.305888
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) − 18.0000i − 0.686743i
\(688\) 6.00000i 0.228748i
\(689\) 26.0000 0.990521
\(690\) 0 0
\(691\) −41.0000 −1.55971 −0.779857 0.625958i \(-0.784708\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) 8.00000i 0.304114i
\(693\) − 8.00000i − 0.303895i
\(694\) 16.0000 0.607352
\(695\) 0 0
\(696\) 4.00000 0.151620
\(697\) 1.00000i 0.0378777i
\(698\) − 14.0000i − 0.529908i
\(699\) −3.00000 −0.113470
\(700\) 0 0
\(701\) −3.00000 −0.113308 −0.0566542 0.998394i \(-0.518043\pi\)
−0.0566542 + 0.998394i \(0.518043\pi\)
\(702\) − 2.00000i − 0.0754851i
\(703\) − 24.0000i − 0.905177i
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −16.0000 −0.602168
\(707\) − 40.0000i − 1.50435i
\(708\) − 15.0000i − 0.563735i
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 2.00000i 0.0749532i
\(713\) 2.00000i 0.0749006i
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 9.00000 0.336346
\(717\) 6.00000i 0.224074i
\(718\) 36.0000i 1.34351i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) − 45.0000i − 1.67473i
\(723\) 14.0000i 0.520666i
\(724\) −11.0000 −0.408812
\(725\) 0 0
\(726\) 7.00000 0.259794
\(727\) − 44.0000i − 1.63187i −0.578144 0.815935i \(-0.696223\pi\)
0.578144 0.815935i \(-0.303777\pi\)
\(728\) 8.00000i 0.296500i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 6.00000 0.221918
\(732\) 5.00000i 0.184805i
\(733\) − 30.0000i − 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 2.00000 0.0738213
\(735\) 0 0
\(736\) −1.00000 −0.0368605
\(737\) − 20.0000i − 0.736709i
\(738\) − 1.00000i − 0.0368105i
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 52.0000i 1.90898i
\(743\) − 17.0000i − 0.623670i −0.950136 0.311835i \(-0.899056\pi\)
0.950136 0.311835i \(-0.100944\pi\)
\(744\) −2.00000 −0.0733236
\(745\) 0 0
\(746\) −4.00000 −0.146450
\(747\) − 11.0000i − 0.402469i
\(748\) 2.00000i 0.0731272i
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) −48.0000 −1.75154 −0.875772 0.482724i \(-0.839647\pi\)
−0.875772 + 0.482724i \(0.839647\pi\)
\(752\) 4.00000i 0.145865i
\(753\) 4.00000i 0.145768i
\(754\) −8.00000 −0.291343
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) 28.0000i 1.01768i 0.860862 + 0.508839i \(0.169925\pi\)
−0.860862 + 0.508839i \(0.830075\pi\)
\(758\) − 1.00000i − 0.0363216i
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) 36.0000 1.30500 0.652499 0.757789i \(-0.273720\pi\)
0.652499 + 0.757789i \(0.273720\pi\)
\(762\) − 16.0000i − 0.579619i
\(763\) 8.00000i 0.289619i
\(764\) −10.0000 −0.361787
\(765\) 0 0
\(766\) 20.0000 0.722629
\(767\) 30.0000i 1.08324i
\(768\) − 1.00000i − 0.0360844i
\(769\) 37.0000 1.33425 0.667127 0.744944i \(-0.267524\pi\)
0.667127 + 0.744944i \(0.267524\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 24.0000i 0.863779i
\(773\) 15.0000i 0.539513i 0.962929 + 0.269756i \(0.0869431\pi\)
−0.962929 + 0.269756i \(0.913057\pi\)
\(774\) −6.00000 −0.215666
\(775\) 0 0
\(776\) 0 0
\(777\) 12.0000i 0.430498i
\(778\) 9.00000i 0.322666i
\(779\) 8.00000 0.286630
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 1.00000i 0.0357599i
\(783\) 4.00000i 0.142948i
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) −8.00000 −0.285351
\(787\) 3.00000i 0.106938i 0.998569 + 0.0534692i \(0.0170279\pi\)
−0.998569 + 0.0534692i \(0.982972\pi\)
\(788\) − 2.00000i − 0.0712470i
\(789\) −4.00000 −0.142404
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) − 2.00000i − 0.0710669i
\(793\) − 10.0000i − 0.355110i
\(794\) −21.0000 −0.745262
\(795\) 0 0
\(796\) 10.0000 0.354441
\(797\) − 31.0000i − 1.09808i −0.835797 0.549038i \(-0.814994\pi\)
0.835797 0.549038i \(-0.185006\pi\)
\(798\) 32.0000i 1.13279i
\(799\) 4.00000 0.141510
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) − 3.00000i − 0.105934i
\(803\) 32.0000i 1.12926i
\(804\) 10.0000 0.352673
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) − 6.00000i − 0.211210i
\(808\) − 10.0000i − 0.351799i
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) − 16.0000i − 0.561490i
\(813\) 21.0000i 0.736502i
\(814\) 6.00000 0.210300
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) − 48.0000i − 1.67931i
\(818\) 19.0000i 0.664319i
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) 12.0000 0.418803 0.209401 0.977830i \(-0.432848\pi\)
0.209401 + 0.977830i \(0.432848\pi\)
\(822\) − 12.0000i − 0.418548i
\(823\) 32.0000i 1.11545i 0.830026 + 0.557725i \(0.188326\pi\)
−0.830026 + 0.557725i \(0.811674\pi\)
\(824\) 3.00000 0.104510
\(825\) 0 0
\(826\) −60.0000 −2.08767
\(827\) − 38.0000i − 1.32139i −0.750655 0.660695i \(-0.770262\pi\)
0.750655 0.660695i \(-0.229738\pi\)
\(828\) − 1.00000i − 0.0347524i
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 31.0000 1.07538
\(832\) 2.00000i 0.0693375i
\(833\) 9.00000i 0.311832i
\(834\) 1.00000 0.0346272
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) − 2.00000i − 0.0691301i
\(838\) 24.0000i 0.829066i
\(839\) −27.0000 −0.932144 −0.466072 0.884747i \(-0.654331\pi\)
−0.466072 + 0.884747i \(0.654331\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 24.0000i 0.827095i
\(843\) 2.00000i 0.0688837i
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −4.00000 −0.137523
\(847\) − 28.0000i − 0.962091i
\(848\) 13.0000i 0.446422i
\(849\) 7.00000 0.240239
\(850\) 0 0
\(851\) 3.00000 0.102839
\(852\) − 1.00000i − 0.0342594i
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 7.00000i 0.239115i 0.992827 + 0.119558i \(0.0381477\pi\)
−0.992827 + 0.119558i \(0.961852\pi\)
\(858\) 4.00000i 0.136558i
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) −4.00000 −0.136320
\(862\) 28.0000i 0.953684i
\(863\) − 40.0000i − 1.36162i −0.732462 0.680808i \(-0.761629\pi\)
0.732462 0.680808i \(-0.238371\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) 1.00000i 0.0339618i
\(868\) 8.00000i 0.271538i
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 2.00000i 0.0677285i
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 0 0
\(876\) −16.0000 −0.540590
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) − 12.0000i − 0.404980i
\(879\) 31.0000 1.04560
\(880\) 0 0
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) − 9.00000i − 0.303046i
\(883\) 50.0000i 1.68263i 0.540542 + 0.841317i \(0.318219\pi\)
−0.540542 + 0.841317i \(0.681781\pi\)
\(884\) 2.00000 0.0672673
\(885\) 0 0
\(886\) 39.0000 1.31023
\(887\) 15.0000i 0.503651i 0.967773 + 0.251825i \(0.0810309\pi\)
−0.967773 + 0.251825i \(0.918969\pi\)
\(888\) 3.00000i 0.100673i
\(889\) −64.0000 −2.14649
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 17.0000i 0.569202i
\(893\) − 32.0000i − 1.07084i
\(894\) 1.00000 0.0334450
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 2.00000i 0.0667781i
\(898\) − 42.0000i − 1.40156i
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 13.0000 0.433093
\(902\) 2.00000i 0.0665927i
\(903\) 24.0000i 0.798670i
\(904\) −15.0000 −0.498893
\(905\) 0 0
\(906\) −1.00000 −0.0332228
\(907\) 23.0000i 0.763702i 0.924224 + 0.381851i \(0.124713\pi\)
−0.924224 + 0.381851i \(0.875287\pi\)
\(908\) 22.0000i 0.730096i
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) 56.0000 1.85536 0.927681 0.373373i \(-0.121799\pi\)
0.927681 + 0.373373i \(0.121799\pi\)
\(912\) 8.00000i 0.264906i
\(913\) 22.0000i 0.728094i
\(914\) −31.0000 −1.02539
\(915\) 0 0
\(916\) −18.0000 −0.594737
\(917\) 32.0000i 1.05673i
\(918\) − 1.00000i − 0.0330049i
\(919\) 47.0000 1.55039 0.775193 0.631724i \(-0.217652\pi\)
0.775193 + 0.631724i \(0.217652\pi\)
\(920\) 0 0
\(921\) 22.0000 0.724925
\(922\) 1.00000i 0.0329332i
\(923\) 2.00000i 0.0658308i
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) −35.0000 −1.15017
\(927\) 3.00000i 0.0985329i
\(928\) − 4.00000i − 0.131306i
\(929\) 15.0000 0.492134 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(930\) 0 0
\(931\) 72.0000 2.35970
\(932\) 3.00000i 0.0982683i
\(933\) − 5.00000i − 0.163693i
\(934\) 3.00000 0.0981630
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) − 17.0000i − 0.555366i −0.960673 0.277683i \(-0.910434\pi\)
0.960673 0.277683i \(-0.0895665\pi\)
\(938\) − 40.0000i − 1.30605i
\(939\) −20.0000 −0.652675
\(940\) 0 0
\(941\) 22.0000 0.717180 0.358590 0.933495i \(-0.383258\pi\)
0.358590 + 0.933495i \(0.383258\pi\)
\(942\) 14.0000i 0.456145i
\(943\) 1.00000i 0.0325645i
\(944\) −15.0000 −0.488208
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 16.0000i 0.519930i 0.965618 + 0.259965i \(0.0837111\pi\)
−0.965618 + 0.259965i \(0.916289\pi\)
\(948\) − 12.0000i − 0.389742i
\(949\) 32.0000 1.03876
\(950\) 0 0
\(951\) 26.0000 0.843108
\(952\) 4.00000i 0.129641i
\(953\) − 42.0000i − 1.36051i −0.732974 0.680257i \(-0.761868\pi\)
0.732974 0.680257i \(-0.238132\pi\)
\(954\) −13.0000 −0.420891
\(955\) 0 0
\(956\) 6.00000 0.194054
\(957\) − 8.00000i − 0.258603i
\(958\) − 16.0000i − 0.516937i
\(959\) −48.0000 −1.55000
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) − 6.00000i − 0.193448i
\(963\) − 12.0000i − 0.386695i
\(964\) 14.0000 0.450910
\(965\) 0 0
\(966\) −4.00000 −0.128698
\(967\) 1.00000i 0.0321578i 0.999871 + 0.0160789i \(0.00511830\pi\)
−0.999871 + 0.0160789i \(0.994882\pi\)
\(968\) − 7.00000i − 0.224989i
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) 25.0000 0.802288 0.401144 0.916015i \(-0.368613\pi\)
0.401144 + 0.916015i \(0.368613\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 4.00000i − 0.128234i
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) − 7.00000i − 0.223835i
\(979\) 4.00000 0.127841
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) − 39.0000i − 1.24454i
\(983\) 8.00000i 0.255160i 0.991828 + 0.127580i \(0.0407210\pi\)
−0.991828 + 0.127580i \(0.959279\pi\)
\(984\) −1.00000 −0.0318788
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) 16.0000i 0.509286i
\(988\) − 16.0000i − 0.509028i
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 2.00000i 0.0635001i
\(993\) − 10.0000i − 0.317340i
\(994\) −4.00000 −0.126872
\(995\) 0 0
\(996\) −11.0000 −0.348548
\(997\) 50.0000i 1.58352i 0.610835 + 0.791758i \(0.290834\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(998\) − 41.0000i − 1.29783i
\(999\) −3.00000 −0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.d.h.2449.1 2
5.2 odd 4 2550.2.a.t.1.1 yes 1
5.3 odd 4 2550.2.a.q.1.1 1
5.4 even 2 inner 2550.2.d.h.2449.2 2
15.2 even 4 7650.2.a.c.1.1 1
15.8 even 4 7650.2.a.cj.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2550.2.a.q.1.1 1 5.3 odd 4
2550.2.a.t.1.1 yes 1 5.2 odd 4
2550.2.d.h.2449.1 2 1.1 even 1 trivial
2550.2.d.h.2449.2 2 5.4 even 2 inner
7650.2.a.c.1.1 1 15.2 even 4
7650.2.a.cj.1.1 1 15.8 even 4