Defining parameters
Level: | \( N \) | \(=\) | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2550.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2550, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 564 | 48 | 516 |
Cusp forms | 516 | 48 | 468 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2550, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2550, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2550, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1275, [\chi])\)\(^{\oplus 2}\)