Properties

Label 2550.2.a.l.1.1
Level $2550$
Weight $2$
Character 2550.1
Self dual yes
Analytic conductor $20.362$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2550.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +4.00000 q^{11} +1.00000 q^{12} +2.00000 q^{13} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +4.00000 q^{19} -4.00000 q^{22} -1.00000 q^{24} -2.00000 q^{26} +1.00000 q^{27} -2.00000 q^{29} +8.00000 q^{31} -1.00000 q^{32} +4.00000 q^{33} +1.00000 q^{34} +1.00000 q^{36} -6.00000 q^{37} -4.00000 q^{38} +2.00000 q^{39} -6.00000 q^{41} +4.00000 q^{43} +4.00000 q^{44} +1.00000 q^{48} -7.00000 q^{49} -1.00000 q^{51} +2.00000 q^{52} +10.0000 q^{53} -1.00000 q^{54} +4.00000 q^{57} +2.00000 q^{58} -4.00000 q^{59} -2.00000 q^{61} -8.00000 q^{62} +1.00000 q^{64} -4.00000 q^{66} -4.00000 q^{67} -1.00000 q^{68} -1.00000 q^{72} +6.00000 q^{73} +6.00000 q^{74} +4.00000 q^{76} -2.00000 q^{78} +8.00000 q^{79} +1.00000 q^{81} +6.00000 q^{82} +12.0000 q^{83} -4.00000 q^{86} -2.00000 q^{87} -4.00000 q^{88} -6.00000 q^{89} +8.00000 q^{93} -1.00000 q^{96} +14.0000 q^{97} +7.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −4.00000 −0.648886
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 2.00000 0.277350
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 2.00000 0.262613
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) −2.00000 −0.226455
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) −2.00000 −0.214423
\(88\) −4.00000 −0.426401
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 7.00000 0.707107
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 1.00000 0.0990148
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 1.00000 0.0962250
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 2.00000 0.184900
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 2.00000 0.181071
\(123\) −6.00000 −0.541002
\(124\) 8.00000 0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 4.00000 0.348155
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −6.00000 −0.496564
\(147\) −7.00000 −0.577350
\(148\) −6.00000 −0.493197
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −4.00000 −0.324443
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) −8.00000 −0.636446
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 4.00000 0.304997
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) −4.00000 −0.300658
\(178\) 6.00000 0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) −8.00000 −0.586588
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000 0.0721688
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) −4.00000 −0.284268
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 10.0000 0.703598
\(203\) 0 0
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 10.0000 0.686803
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 6.00000 0.402694
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 4.00000 0.264906
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) −5.00000 −0.321412
\(243\) 1.00000 0.0641500
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 8.00000 0.509028
\(248\) −8.00000 −0.508001
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) −4.00000 −0.249029
\(259\) 0 0
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 20.0000 1.23560
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) −4.00000 −0.244339
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) −20.0000 −1.19952
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) 6.00000 0.351123
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 7.00000 0.408248
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 4.00000 0.232104
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) −10.0000 −0.574485
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) −2.00000 −0.113228
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) −10.0000 −0.560772
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 12.0000 0.664619
\(327\) 14.0000 0.774202
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 12.0000 0.658586
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 9.00000 0.489535
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) −2.00000 −0.107211
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) −4.00000 −0.213201
\(353\) −34.0000 −1.80964 −0.904819 0.425797i \(-0.859994\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 4.00000 0.212598
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −22.0000 −1.15629
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 8.00000 0.414781
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.0000 1.63512 0.817562 0.575841i \(-0.195325\pi\)
0.817562 + 0.575841i \(0.195325\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) 4.00000 0.203331
\(388\) 14.0000 0.710742
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.00000 0.353553
\(393\) −20.0000 −1.00887
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 4.00000 0.199502
\(403\) 16.0000 0.797017
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 1.00000 0.0495074
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 20.0000 0.979404
\(418\) −16.0000 −0.782586
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 1.00000 0.0481125
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) −6.00000 −0.286691
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 2.00000 0.0951303
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) −6.00000 −0.284747
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 14.0000 0.658505
\(453\) 8.00000 0.375873
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) −6.00000 −0.280362
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 2.00000 0.0924500
\(469\) 0 0
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 4.00000 0.184115
\(473\) 16.0000 0.735681
\(474\) −8.00000 −0.367452
\(475\) 0 0
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) −16.0000 −0.731823
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 2.00000 0.0905357
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) −6.00000 −0.270501
\(493\) 2.00000 0.0900755
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 4.00000 0.176604
\(514\) 2.00000 0.0882162
\(515\) 0 0
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 2.00000 0.0875376
\(523\) −44.0000 −1.92399 −0.961993 0.273075i \(-0.911959\pi\)
−0.961993 + 0.273075i \(0.911959\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) −8.00000 −0.348485
\(528\) 4.00000 0.174078
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) −12.0000 −0.517838
\(538\) 18.0000 0.776035
\(539\) −28.0000 −1.20605
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 16.0000 0.687259
\(543\) 22.0000 0.944110
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −10.0000 −0.427179
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) −8.00000 −0.338667
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 6.00000 0.253095
\(563\) 44.0000 1.85438 0.927189 0.374593i \(-0.122217\pi\)
0.927189 + 0.374593i \(0.122217\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −18.0000 −0.748054
\(580\) 0 0
\(581\) 0 0
\(582\) −14.0000 −0.580319
\(583\) 40.0000 1.65663
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) −7.00000 −0.288675
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) −6.00000 −0.246598
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.00000 −0.0404226
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) −8.00000 −0.321807
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −16.0000 −0.641542
\(623\) 0 0
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) −22.0000 −0.879297
\(627\) 16.0000 0.638978
\(628\) 18.0000 0.718278
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) −8.00000 −0.318223
\(633\) 12.0000 0.476957
\(634\) 30.0000 1.19145
\(635\) 0 0
\(636\) 10.0000 0.396526
\(637\) −14.0000 −0.554700
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 4.00000 0.157867
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 4.00000 0.155464
\(663\) −2.00000 −0.0776736
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) −50.0000 −1.92736 −0.963679 0.267063i \(-0.913947\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) −30.0000 −1.15556
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) −14.0000 −0.537667
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) −32.0000 −1.22534
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 4.00000 0.152944
\(685\) 0 0
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) 4.00000 0.152499
\(689\) 20.0000 0.761939
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) −14.0000 −0.532200
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 2.00000 0.0758098
\(697\) 6.00000 0.227266
\(698\) 2.00000 0.0757011
\(699\) 22.0000 0.832116
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) −2.00000 −0.0754851
\(703\) −24.0000 −0.905177
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 34.0000 1.27961
\(707\) 0 0
\(708\) −4.00000 −0.150329
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 6.00000 0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 16.0000 0.597531
\(718\) −24.0000 −0.895672
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 18.0000 0.669427
\(724\) 22.0000 0.817624
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) −2.00000 −0.0739221
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 6.00000 0.220863
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −8.00000 −0.293294
\(745\) 0 0
\(746\) 6.00000 0.219676
\(747\) 12.0000 0.439057
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −32.0000 −1.15621
\(767\) −8.00000 −0.288863
\(768\) 1.00000 0.0360844
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) −18.0000 −0.647834
\(773\) −38.0000 −1.36677 −0.683383 0.730061i \(-0.739492\pi\)
−0.683383 + 0.730061i \(0.739492\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) −22.0000 −0.788738
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) 20.0000 0.713376
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) −6.00000 −0.213741
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 0 0
\(792\) −4.00000 −0.142134
\(793\) −4.00000 −0.142044
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 30.0000 1.05934
\(803\) 24.0000 0.846942
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) −18.0000 −0.633630
\(808\) 10.0000 0.351799
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) 16.0000 0.559769
\(818\) 38.0000 1.32864
\(819\) 0 0
\(820\) 0 0
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 10.0000 0.348790
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 2.00000 0.0693375
\(833\) 7.00000 0.242536
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) 8.00000 0.276520
\(838\) 36.0000 1.24360
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −6.00000 −0.206774
\(843\) −6.00000 −0.206651
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 10.0000 0.343401
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 10.0000 0.342393 0.171197 0.985237i \(-0.445237\pi\)
0.171197 + 0.985237i \(0.445237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) −8.00000 −0.273115
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 18.0000 0.611665
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −14.0000 −0.474100
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 32.0000 1.07995
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 7.00000 0.235702
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 6.00000 0.201347
\(889\) 0 0
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −18.0000 −0.600668
\(899\) −16.0000 −0.533630
\(900\) 0 0
\(901\) −10.0000 −0.333148
\(902\) 24.0000 0.799113
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −12.0000 −0.398234
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) 4.00000 0.132453
\(913\) 48.0000 1.58857
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 0 0
\(918\) 1.00000 0.0330049
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 2.00000 0.0656532
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) 22.0000 0.720634
\(933\) 16.0000 0.523816
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) −18.0000 −0.586472
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 8.00000 0.259828
\(949\) 12.0000 0.389536
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) −58.0000 −1.87880 −0.939402 0.342817i \(-0.888619\pi\)
−0.939402 + 0.342817i \(0.888619\pi\)
\(954\) −10.0000 −0.323762
\(955\) 0 0
\(956\) 16.0000 0.517477
\(957\) −8.00000 −0.258603
\(958\) 40.0000 1.29234
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 12.0000 0.386896
\(963\) −4.00000 −0.128898
\(964\) 18.0000 0.579741
\(965\) 0 0
\(966\) 0 0
\(967\) 24.0000 0.771788 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(968\) −5.00000 −0.160706
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 46.0000 1.47167 0.735835 0.677161i \(-0.236790\pi\)
0.735835 + 0.677161i \(0.236790\pi\)
\(978\) 12.0000 0.383718
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 20.0000 0.638226
\(983\) −48.0000 −1.53096 −0.765481 0.643458i \(-0.777499\pi\)
−0.765481 + 0.643458i \(0.777499\pi\)
\(984\) 6.00000 0.191273
\(985\) 0 0
\(986\) −2.00000 −0.0636930
\(987\) 0 0
\(988\) 8.00000 0.254514
\(989\) 0 0
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) −8.00000 −0.254000
\(993\) −4.00000 −0.126936
\(994\) 0 0
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) 20.0000 0.633089
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.a.l.1.1 1
3.2 odd 2 7650.2.a.bx.1.1 1
5.2 odd 4 2550.2.d.k.2449.1 2
5.3 odd 4 2550.2.d.k.2449.2 2
5.4 even 2 510.2.a.e.1.1 1
15.14 odd 2 1530.2.a.b.1.1 1
20.19 odd 2 4080.2.a.ba.1.1 1
85.84 even 2 8670.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.e.1.1 1 5.4 even 2
1530.2.a.b.1.1 1 15.14 odd 2
2550.2.a.l.1.1 1 1.1 even 1 trivial
2550.2.d.k.2449.1 2 5.2 odd 4
2550.2.d.k.2449.2 2 5.3 odd 4
4080.2.a.ba.1.1 1 20.19 odd 2
7650.2.a.bx.1.1 1 3.2 odd 2
8670.2.a.v.1.1 1 85.84 even 2