Properties

Label 2550.2.a.be
Level $2550$
Weight $2$
Character orbit 2550.a
Self dual yes
Analytic conductor $20.362$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(1,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{6} + 2 q^{7} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} + q^{4} + q^{6} + 2 q^{7} + q^{8} + q^{9} + q^{12} + 6 q^{13} + 2 q^{14} + q^{16} + q^{17} + q^{18} + 4 q^{19} + 2 q^{21} - 6 q^{23} + q^{24} + 6 q^{26} + q^{27} + 2 q^{28} - 4 q^{29} - 6 q^{31} + q^{32} + q^{34} + q^{36} + 4 q^{37} + 4 q^{38} + 6 q^{39} - 10 q^{41} + 2 q^{42} + 4 q^{43} - 6 q^{46} - 4 q^{47} + q^{48} - 3 q^{49} + q^{51} + 6 q^{52} + 2 q^{53} + q^{54} + 2 q^{56} + 4 q^{57} - 4 q^{58} + 12 q^{59} - 4 q^{61} - 6 q^{62} + 2 q^{63} + q^{64} + 12 q^{67} + q^{68} - 6 q^{69} - 6 q^{71} + q^{72} - 2 q^{73} + 4 q^{74} + 4 q^{76} + 6 q^{78} + 10 q^{79} + q^{81} - 10 q^{82} + 12 q^{83} + 2 q^{84} + 4 q^{86} - 4 q^{87} - 2 q^{89} + 12 q^{91} - 6 q^{92} - 6 q^{93} - 4 q^{94} + q^{96} - 6 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 0 1.00000 2.00000 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(17\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2550.2.a.be 1
3.b odd 2 1 7650.2.a.z 1
5.b even 2 1 102.2.a.a 1
5.c odd 4 2 2550.2.d.q 2
15.d odd 2 1 306.2.a.d 1
20.d odd 2 1 816.2.a.h 1
35.c odd 2 1 4998.2.a.x 1
40.e odd 2 1 3264.2.a.p 1
40.f even 2 1 3264.2.a.bf 1
60.h even 2 1 2448.2.a.t 1
85.c even 2 1 1734.2.a.h 1
85.j even 4 2 1734.2.b.d 2
85.m even 8 4 1734.2.f.g 4
120.i odd 2 1 9792.2.a.a 1
120.m even 2 1 9792.2.a.b 1
255.h odd 2 1 5202.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.a.a 1 5.b even 2 1
306.2.a.d 1 15.d odd 2 1
816.2.a.h 1 20.d odd 2 1
1734.2.a.h 1 85.c even 2 1
1734.2.b.d 2 85.j even 4 2
1734.2.f.g 4 85.m even 8 4
2448.2.a.t 1 60.h even 2 1
2550.2.a.be 1 1.a even 1 1 trivial
2550.2.d.q 2 5.c odd 4 2
3264.2.a.p 1 40.e odd 2 1
3264.2.a.bf 1 40.f even 2 1
4998.2.a.x 1 35.c odd 2 1
5202.2.a.g 1 255.h odd 2 1
7650.2.a.z 1 3.b odd 2 1
9792.2.a.a 1 120.i odd 2 1
9792.2.a.b 1 120.m even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2550))\):

\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 4 \) Copy content Toggle raw display
$31$ \( T + 6 \) Copy content Toggle raw display
$37$ \( T - 4 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 4 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less