Defining parameters
Level: | \( N \) | \(=\) | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2550.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 41 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2550))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 564 | 52 | 512 |
Cusp forms | 517 | 52 | 465 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | $+$ | \(3\) |
\(+\) | \(+\) | \(+\) | \(-\) | $-$ | \(3\) |
\(+\) | \(+\) | \(-\) | \(+\) | $-$ | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | $+$ | \(4\) |
\(+\) | \(-\) | \(+\) | \(+\) | $-$ | \(4\) |
\(+\) | \(-\) | \(+\) | \(-\) | $+$ | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | $+$ | \(3\) |
\(+\) | \(-\) | \(-\) | \(-\) | $-$ | \(5\) |
\(-\) | \(+\) | \(+\) | \(+\) | $-$ | \(3\) |
\(-\) | \(+\) | \(+\) | \(-\) | $+$ | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | $+$ | \(4\) |
\(-\) | \(+\) | \(-\) | \(-\) | $-$ | \(4\) |
\(-\) | \(-\) | \(+\) | \(+\) | $+$ | \(2\) |
\(-\) | \(-\) | \(+\) | \(-\) | $-$ | \(5\) |
\(-\) | \(-\) | \(-\) | \(+\) | $-$ | \(5\) |
\(-\) | \(-\) | \(-\) | \(-\) | $+$ | \(1\) |
Plus space | \(+\) | \(21\) | |||
Minus space | \(-\) | \(31\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2550))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2550))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2550)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 2}\)