Defining parameters
| Level: | \( N \) | \(=\) | \( 255 = 3 \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 255.w (of order \(8\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
| Character field: | \(\Q(\zeta_{8})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(255, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 160 | 48 | 112 |
| Cusp forms | 128 | 48 | 80 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(255, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 255.2.w.a | $16$ | $2.036$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+(-\beta _{2}-\beta _{5}-\beta _{7}-\beta _{8}-\beta _{10}+\beta _{13}+\cdots)q^{2}+\cdots\) |
| 255.2.w.b | $32$ | $2.036$ | None | \(0\) | \(0\) | \(0\) | \(8\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(255, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(255, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)