Properties

Label 255.1.i.a
Level $255$
Weight $1$
Character orbit 255.i
Analytic conductor $0.127$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [255,1,Mod(89,255)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(255, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("255.89");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 255 = 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 255.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.127261578221\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.368475.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{3} - \zeta_{8}) q^{2} + \zeta_{8}^{3} q^{3} - q^{4} - \zeta_{8}^{3} q^{5} + (\zeta_{8}^{2} + 1) q^{6} - \zeta_{8}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{8}^{3} - \zeta_{8}) q^{2} + \zeta_{8}^{3} q^{3} - q^{4} - \zeta_{8}^{3} q^{5} + (\zeta_{8}^{2} + 1) q^{6} - \zeta_{8}^{2} q^{9} + ( - \zeta_{8}^{2} - 1) q^{10} - \zeta_{8}^{3} q^{12} + \zeta_{8}^{2} q^{15} - q^{16} + \zeta_{8}^{3} q^{17} + (\zeta_{8}^{3} - \zeta_{8}) q^{18} + \zeta_{8}^{3} q^{20} + \zeta_{8} q^{23} - \zeta_{8}^{2} q^{25} + \zeta_{8} q^{27} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{30} + (\zeta_{8}^{2} - 1) q^{31} + (\zeta_{8}^{3} + \zeta_{8}) q^{32} + (\zeta_{8}^{2} + 1) q^{34} + \zeta_{8}^{2} q^{36} - \zeta_{8} q^{45} + ( - 2 \zeta_{8}^{2} + 2) q^{46} + (\zeta_{8}^{3} - \zeta_{8}) q^{47} - \zeta_{8}^{3} q^{48} + \zeta_{8}^{2} q^{49} + (\zeta_{8}^{3} - \zeta_{8}) q^{50} - \zeta_{8}^{2} q^{51} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{53} + ( - \zeta_{8}^{2} + 1) q^{54} - \zeta_{8}^{2} q^{60} + (\zeta_{8}^{2} + 1) q^{61} + \zeta_{8} q^{62} + q^{64} - \zeta_{8}^{3} q^{68} - 2 q^{69} + \zeta_{8} q^{75} + ( - \zeta_{8}^{2} - 1) q^{79} + \zeta_{8}^{3} q^{80} - q^{81} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{83} + \zeta_{8}^{2} q^{85} + (\zeta_{8}^{2} - 1) q^{90} - 2 \zeta_{8} q^{92} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{93} + \zeta_{8}^{2} q^{94} + ( - \zeta_{8}^{2} - 1) q^{96} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 4 q^{6} - 4 q^{10} - 4 q^{16} - 4 q^{31} + 4 q^{34} + 8 q^{46} + 4 q^{54} + 4 q^{61} + 4 q^{64} - 8 q^{69} - 4 q^{79} - 4 q^{81} - 4 q^{90} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/255\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(86\) \(241\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
89.1
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
1.41421i −0.707107 + 0.707107i −1.00000 0.707107 0.707107i 1.00000 + 1.00000i 0 0 1.00000i −1.00000 1.00000i
89.2 1.41421i 0.707107 0.707107i −1.00000 −0.707107 + 0.707107i 1.00000 + 1.00000i 0 0 1.00000i −1.00000 1.00000i
149.1 1.41421i 0.707107 + 0.707107i −1.00000 −0.707107 0.707107i 1.00000 1.00000i 0 0 1.00000i −1.00000 + 1.00000i
149.2 1.41421i −0.707107 0.707107i −1.00000 0.707107 + 0.707107i 1.00000 1.00000i 0 0 1.00000i −1.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
17.c even 4 1 inner
51.f odd 4 1 inner
85.j even 4 1 inner
255.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 255.1.i.a 4
3.b odd 2 1 inner 255.1.i.a 4
5.b even 2 1 inner 255.1.i.a 4
5.c odd 4 2 1275.1.t.a 4
15.d odd 2 1 CM 255.1.i.a 4
15.e even 4 2 1275.1.t.a 4
17.c even 4 1 inner 255.1.i.a 4
51.f odd 4 1 inner 255.1.i.a 4
85.f odd 4 1 1275.1.t.a 4
85.i odd 4 1 1275.1.t.a 4
85.j even 4 1 inner 255.1.i.a 4
255.i odd 4 1 inner 255.1.i.a 4
255.k even 4 1 1275.1.t.a 4
255.r even 4 1 1275.1.t.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
255.1.i.a 4 1.a even 1 1 trivial
255.1.i.a 4 3.b odd 2 1 inner
255.1.i.a 4 5.b even 2 1 inner
255.1.i.a 4 15.d odd 2 1 CM
255.1.i.a 4 17.c even 4 1 inner
255.1.i.a 4 51.f odd 4 1 inner
255.1.i.a 4 85.j even 4 1 inner
255.1.i.a 4 255.i odd 4 1 inner
1275.1.t.a 4 5.c odd 4 2
1275.1.t.a 4 15.e even 4 2
1275.1.t.a 4 85.f odd 4 1
1275.1.t.a 4 85.i odd 4 1
1275.1.t.a 4 255.k even 4 1
1275.1.t.a 4 255.r even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(255, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 16 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less