Properties

Label 2548.2.j.c.1353.1
Level $2548$
Weight $2$
Character 2548.1353
Analytic conductor $20.346$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(1145,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.1145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1353.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1353
Dual form 2548.2.j.c.1145.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} +(2.00000 + 3.46410i) q^{11} -1.00000 q^{13} -2.00000 q^{15} +(-1.00000 - 1.73205i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(3.50000 - 6.06218i) q^{23} +(2.00000 + 3.46410i) q^{25} -4.00000 q^{27} -5.00000 q^{29} +(-4.50000 - 7.79423i) q^{31} +(4.00000 - 6.92820i) q^{33} +(1.00000 - 1.73205i) q^{37} +(1.00000 + 1.73205i) q^{39} -2.00000 q^{41} +1.00000 q^{43} +(0.500000 + 0.866025i) q^{45} +(4.50000 - 7.79423i) q^{47} +(-2.00000 + 3.46410i) q^{51} +(-1.50000 - 2.59808i) q^{53} +4.00000 q^{55} +2.00000 q^{57} +(7.00000 - 12.1244i) q^{61} +(-0.500000 + 0.866025i) q^{65} +(-5.00000 - 8.66025i) q^{67} -14.0000 q^{69} -14.0000 q^{71} +(1.50000 + 2.59808i) q^{73} +(4.00000 - 6.92820i) q^{75} +(-2.50000 + 4.33013i) q^{79} +(5.50000 + 9.52628i) q^{81} -5.00000 q^{83} -2.00000 q^{85} +(5.00000 + 8.66025i) q^{87} +(-4.50000 + 7.79423i) q^{89} +(-9.00000 + 15.5885i) q^{93} +(0.500000 + 0.866025i) q^{95} +1.00000 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + q^{5} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + q^{5} - q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{15} - 2 q^{17} - q^{19} + 7 q^{23} + 4 q^{25} - 8 q^{27} - 10 q^{29} - 9 q^{31} + 8 q^{33} + 2 q^{37} + 2 q^{39} - 4 q^{41} + 2 q^{43} + q^{45} + 9 q^{47} - 4 q^{51} - 3 q^{53} + 8 q^{55} + 4 q^{57} + 14 q^{61} - q^{65} - 10 q^{67} - 28 q^{69} - 28 q^{71} + 3 q^{73} + 8 q^{75} - 5 q^{79} + 11 q^{81} - 10 q^{83} - 4 q^{85} + 10 q^{87} - 9 q^{89} - 18 q^{93} + q^{95} + 2 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i \(-0.970753\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.50000 6.06218i 0.729800 1.26405i −0.227167 0.973856i \(-0.572946\pi\)
0.956967 0.290196i \(-0.0937204\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −4.50000 7.79423i −0.808224 1.39988i −0.914093 0.405505i \(-0.867096\pi\)
0.105869 0.994380i \(-0.466238\pi\)
\(32\) 0 0
\(33\) 4.00000 6.92820i 0.696311 1.20605i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 0 0
\(39\) 1.00000 + 1.73205i 0.160128 + 0.277350i
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 0 0
\(47\) 4.50000 7.79423i 0.656392 1.13691i −0.325150 0.945662i \(-0.605415\pi\)
0.981543 0.191243i \(-0.0612518\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 + 3.46410i −0.280056 + 0.485071i
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 0 0
\(69\) −14.0000 −1.68540
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) 1.50000 + 2.59808i 0.175562 + 0.304082i 0.940356 0.340193i \(-0.110493\pi\)
−0.764794 + 0.644275i \(0.777159\pi\)
\(74\) 0 0
\(75\) 4.00000 6.92820i 0.461880 0.800000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.50000 + 4.33013i −0.281272 + 0.487177i −0.971698 0.236225i \(-0.924090\pi\)
0.690426 + 0.723403i \(0.257423\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 5.00000 + 8.66025i 0.536056 + 0.928477i
\(88\) 0 0
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9.00000 + 15.5885i −0.933257 + 1.61645i
\(94\) 0 0
\(95\) 0.500000 + 0.866025i 0.0512989 + 0.0888523i
\(96\) 0 0
\(97\) 1.00000 0.101535 0.0507673 0.998711i \(-0.483833\pi\)
0.0507673 + 0.998711i \(0.483833\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −6.00000 10.3923i −0.597022 1.03407i −0.993258 0.115924i \(-0.963017\pi\)
0.396236 0.918149i \(-0.370316\pi\)
\(102\) 0 0
\(103\) 2.00000 3.46410i 0.197066 0.341328i −0.750510 0.660859i \(-0.770192\pi\)
0.947576 + 0.319531i \(0.103525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) 0 0
\(109\) 2.00000 + 3.46410i 0.191565 + 0.331801i 0.945769 0.324840i \(-0.105310\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 0 0
\(115\) −3.50000 6.06218i −0.326377 0.565301i
\(116\) 0 0
\(117\) 0.500000 0.866025i 0.0462250 0.0800641i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) 2.00000 + 3.46410i 0.180334 + 0.312348i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −1.00000 1.73205i −0.0880451 0.152499i
\(130\) 0 0
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.00000 + 3.46410i −0.172133 + 0.298142i
\(136\) 0 0
\(137\) 7.00000 + 12.1244i 0.598050 + 1.03585i 0.993109 + 0.117198i \(0.0373911\pi\)
−0.395058 + 0.918656i \(0.629276\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) −18.0000 −1.51587
\(142\) 0 0
\(143\) −2.00000 3.46410i −0.167248 0.289683i
\(144\) 0 0
\(145\) −2.50000 + 4.33013i −0.207614 + 0.359597i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 + 10.3923i −0.491539 + 0.851371i −0.999953 0.00974235i \(-0.996899\pi\)
0.508413 + 0.861113i \(0.330232\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −9.00000 −0.722897
\(156\) 0 0
\(157\) 5.00000 + 8.66025i 0.399043 + 0.691164i 0.993608 0.112884i \(-0.0360089\pi\)
−0.594565 + 0.804048i \(0.702676\pi\)
\(158\) 0 0
\(159\) −3.00000 + 5.19615i −0.237915 + 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.0000 + 20.7846i −0.939913 + 1.62798i −0.174282 + 0.984696i \(0.555760\pi\)
−0.765631 + 0.643280i \(0.777573\pi\)
\(164\) 0 0
\(165\) −4.00000 6.92820i −0.311400 0.539360i
\(166\) 0 0
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.500000 0.866025i −0.0382360 0.0662266i
\(172\) 0 0
\(173\) 1.00000 1.73205i 0.0760286 0.131685i −0.825505 0.564396i \(-0.809109\pi\)
0.901533 + 0.432710i \(0.142443\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.50000 7.79423i −0.336346 0.582568i 0.647397 0.762153i \(-0.275858\pi\)
−0.983742 + 0.179585i \(0.942524\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) −28.0000 −2.06982
\(184\) 0 0
\(185\) −1.00000 1.73205i −0.0735215 0.127343i
\(186\) 0 0
\(187\) 4.00000 6.92820i 0.292509 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 20.7846i 0.868290 1.50392i 0.00454614 0.999990i \(-0.498553\pi\)
0.863743 0.503932i \(-0.168114\pi\)
\(192\) 0 0
\(193\) −1.00000 1.73205i −0.0719816 0.124676i 0.827788 0.561041i \(-0.189599\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −7.00000 12.1244i −0.496217 0.859473i 0.503774 0.863836i \(-0.331945\pi\)
−0.999990 + 0.00436292i \(0.998611\pi\)
\(200\) 0 0
\(201\) −10.0000 + 17.3205i −0.705346 + 1.22169i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 + 1.73205i −0.0698430 + 0.120972i
\(206\) 0 0
\(207\) 3.50000 + 6.06218i 0.243267 + 0.421350i
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −23.0000 −1.58339 −0.791693 0.610920i \(-0.790800\pi\)
−0.791693 + 0.610920i \(0.790800\pi\)
\(212\) 0 0
\(213\) 14.0000 + 24.2487i 0.959264 + 1.66149i
\(214\) 0 0
\(215\) 0.500000 0.866025i 0.0340997 0.0590624i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.00000 5.19615i 0.202721 0.351123i
\(220\) 0 0
\(221\) 1.00000 + 1.73205i 0.0672673 + 0.116510i
\(222\) 0 0
\(223\) −21.0000 −1.40626 −0.703132 0.711059i \(-0.748216\pi\)
−0.703132 + 0.711059i \(0.748216\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) −4.00000 6.92820i −0.265489 0.459841i 0.702202 0.711977i \(-0.252200\pi\)
−0.967692 + 0.252136i \(0.918867\pi\)
\(228\) 0 0
\(229\) −1.00000 + 1.73205i −0.0660819 + 0.114457i −0.897173 0.441679i \(-0.854383\pi\)
0.831092 + 0.556136i \(0.187717\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.5000 21.6506i 0.818902 1.41838i −0.0875895 0.996157i \(-0.527916\pi\)
0.906492 0.422224i \(-0.138750\pi\)
\(234\) 0 0
\(235\) −4.50000 7.79423i −0.293548 0.508439i
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −12.5000 21.6506i −0.805196 1.39464i −0.916159 0.400815i \(-0.868727\pi\)
0.110963 0.993825i \(-0.464606\pi\)
\(242\) 0 0
\(243\) 5.00000 8.66025i 0.320750 0.555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.500000 0.866025i 0.0318142 0.0551039i
\(248\) 0 0
\(249\) 5.00000 + 8.66025i 0.316862 + 0.548821i
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 28.0000 1.76034
\(254\) 0 0
\(255\) 2.00000 + 3.46410i 0.125245 + 0.216930i
\(256\) 0 0
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.50000 4.33013i 0.154746 0.268028i
\(262\) 0 0
\(263\) −9.50000 16.4545i −0.585795 1.01463i −0.994776 0.102084i \(-0.967449\pi\)
0.408981 0.912543i \(-0.365884\pi\)
\(264\) 0 0
\(265\) −3.00000 −0.184289
\(266\) 0 0
\(267\) 18.0000 1.10158
\(268\) 0 0
\(269\) 12.0000 + 20.7846i 0.731653 + 1.26726i 0.956176 + 0.292791i \(0.0945841\pi\)
−0.224523 + 0.974469i \(0.572083\pi\)
\(270\) 0 0
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.00000 + 13.8564i −0.482418 + 0.835573i
\(276\) 0 0
\(277\) 11.5000 + 19.9186i 0.690968 + 1.19679i 0.971521 + 0.236953i \(0.0761488\pi\)
−0.280553 + 0.959839i \(0.590518\pi\)
\(278\) 0 0
\(279\) 9.00000 0.538816
\(280\) 0 0
\(281\) −8.00000 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(282\) 0 0
\(283\) −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i \(-0.204600\pi\)
−0.919327 + 0.393494i \(0.871266\pi\)
\(284\) 0 0
\(285\) 1.00000 1.73205i 0.0592349 0.102598i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) −1.00000 1.73205i −0.0586210 0.101535i
\(292\) 0 0
\(293\) −5.00000 −0.292103 −0.146052 0.989277i \(-0.546657\pi\)
−0.146052 + 0.989277i \(0.546657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −8.00000 13.8564i −0.464207 0.804030i
\(298\) 0 0
\(299\) −3.50000 + 6.06218i −0.202410 + 0.350585i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.0000 + 20.7846i −0.689382 + 1.19404i
\(304\) 0 0
\(305\) −7.00000 12.1244i −0.400819 0.694239i
\(306\) 0 0
\(307\) 27.0000 1.54097 0.770486 0.637457i \(-0.220014\pi\)
0.770486 + 0.637457i \(0.220014\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −6.00000 + 10.3923i −0.339140 + 0.587408i −0.984271 0.176664i \(-0.943469\pi\)
0.645131 + 0.764072i \(0.276803\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0000 + 17.3205i −0.561656 + 0.972817i 0.435696 + 0.900094i \(0.356502\pi\)
−0.997352 + 0.0727229i \(0.976831\pi\)
\(318\) 0 0
\(319\) −10.0000 17.3205i −0.559893 0.969762i
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −2.00000 3.46410i −0.110940 0.192154i
\(326\) 0 0
\(327\) 4.00000 6.92820i 0.221201 0.383131i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.0000 + 25.9808i −0.824475 + 1.42803i 0.0778456 + 0.996965i \(0.475196\pi\)
−0.902320 + 0.431066i \(0.858137\pi\)
\(332\) 0 0
\(333\) 1.00000 + 1.73205i 0.0547997 + 0.0949158i
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 21.0000 1.14394 0.571971 0.820274i \(-0.306179\pi\)
0.571971 + 0.820274i \(0.306179\pi\)
\(338\) 0 0
\(339\) −1.00000 1.73205i −0.0543125 0.0940721i
\(340\) 0 0
\(341\) 18.0000 31.1769i 0.974755 1.68832i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.00000 + 12.1244i −0.376867 + 0.652753i
\(346\) 0 0
\(347\) −8.00000 13.8564i −0.429463 0.743851i 0.567363 0.823468i \(-0.307964\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(348\) 0 0
\(349\) −35.0000 −1.87351 −0.936754 0.349990i \(-0.886185\pi\)
−0.936754 + 0.349990i \(0.886185\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) −1.00000 1.73205i −0.0532246 0.0921878i 0.838186 0.545385i \(-0.183617\pi\)
−0.891410 + 0.453197i \(0.850283\pi\)
\(354\) 0 0
\(355\) −7.00000 + 12.1244i −0.371521 + 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.0000 25.9808i 0.791670 1.37121i −0.133263 0.991081i \(-0.542545\pi\)
0.924932 0.380131i \(-0.124121\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) 0 0
\(367\) 12.0000 + 20.7846i 0.626395 + 1.08495i 0.988269 + 0.152721i \(0.0488036\pi\)
−0.361874 + 0.932227i \(0.617863\pi\)
\(368\) 0 0
\(369\) 1.00000 1.73205i 0.0520579 0.0901670i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 0 0
\(375\) −9.00000 15.5885i −0.464758 0.804984i
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 8.00000 + 13.8564i 0.409852 + 0.709885i
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.500000 + 0.866025i −0.0254164 + 0.0440225i
\(388\) 0 0
\(389\) 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i \(0.0216579\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(390\) 0 0
\(391\) −14.0000 −0.708010
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) 0 0
\(395\) 2.50000 + 4.33013i 0.125789 + 0.217872i
\(396\) 0 0
\(397\) −12.5000 + 21.6506i −0.627357 + 1.08661i 0.360723 + 0.932673i \(0.382530\pi\)
−0.988080 + 0.153941i \(0.950803\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.0000 24.2487i 0.699127 1.21092i −0.269643 0.962960i \(-0.586906\pi\)
0.968770 0.247962i \(-0.0797610\pi\)
\(402\) 0 0
\(403\) 4.50000 + 7.79423i 0.224161 + 0.388258i
\(404\) 0 0
\(405\) 11.0000 0.546594
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −12.5000 21.6506i −0.618085 1.07056i −0.989835 0.142222i \(-0.954575\pi\)
0.371750 0.928333i \(-0.378758\pi\)
\(410\) 0 0
\(411\) 14.0000 24.2487i 0.690569 1.19610i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.50000 + 4.33013i −0.122720 + 0.212558i
\(416\) 0 0
\(417\) 16.0000 + 27.7128i 0.783523 + 1.35710i
\(418\) 0 0
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 4.50000 + 7.79423i 0.218797 + 0.378968i
\(424\) 0 0
\(425\) 4.00000 6.92820i 0.194029 0.336067i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.00000 + 6.92820i −0.193122 + 0.334497i
\(430\) 0 0
\(431\) −7.00000 12.1244i −0.337178 0.584010i 0.646723 0.762725i \(-0.276139\pi\)
−0.983901 + 0.178716i \(0.942806\pi\)
\(432\) 0 0
\(433\) −24.0000 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 10.0000 0.479463
\(436\) 0 0
\(437\) 3.50000 + 6.06218i 0.167428 + 0.289993i
\(438\) 0 0
\(439\) 5.00000 8.66025i 0.238637 0.413331i −0.721686 0.692220i \(-0.756633\pi\)
0.960323 + 0.278889i \(0.0899661\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.5000 33.7750i 0.926473 1.60470i 0.137298 0.990530i \(-0.456158\pi\)
0.789175 0.614168i \(-0.210508\pi\)
\(444\) 0 0
\(445\) 4.50000 + 7.79423i 0.213320 + 0.369482i
\(446\) 0 0
\(447\) 24.0000 1.13516
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −4.00000 6.92820i −0.188353 0.326236i
\(452\) 0 0
\(453\) −14.0000 + 24.2487i −0.657777 + 1.13930i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.00000 5.19615i 0.140334 0.243066i −0.787288 0.616585i \(-0.788516\pi\)
0.927622 + 0.373519i \(0.121849\pi\)
\(458\) 0 0
\(459\) 4.00000 + 6.92820i 0.186704 + 0.323381i
\(460\) 0 0
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 9.00000 + 15.5885i 0.417365 + 0.722897i
\(466\) 0 0
\(467\) −4.00000 + 6.92820i −0.185098 + 0.320599i −0.943610 0.331061i \(-0.892594\pi\)
0.758512 + 0.651660i \(0.225927\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 10.0000 17.3205i 0.460776 0.798087i
\(472\) 0 0
\(473\) 2.00000 + 3.46410i 0.0919601 + 0.159280i
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 0 0
\(479\) 13.5000 + 23.3827i 0.616831 + 1.06838i 0.990060 + 0.140643i \(0.0449170\pi\)
−0.373230 + 0.927739i \(0.621750\pi\)
\(480\) 0 0
\(481\) −1.00000 + 1.73205i −0.0455961 + 0.0789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.500000 0.866025i 0.0227038 0.0393242i
\(486\) 0 0
\(487\) 17.0000 + 29.4449i 0.770344 + 1.33427i 0.937375 + 0.348323i \(0.113249\pi\)
−0.167031 + 0.985952i \(0.553418\pi\)
\(488\) 0 0
\(489\) 48.0000 2.17064
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) 5.00000 + 8.66025i 0.225189 + 0.390038i
\(494\) 0 0
\(495\) −2.00000 + 3.46410i −0.0898933 + 0.155700i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.00000 1.73205i 0.0447661 0.0775372i −0.842774 0.538267i \(-0.819079\pi\)
0.887540 + 0.460730i \(0.152412\pi\)
\(500\) 0 0
\(501\) 3.00000 + 5.19615i 0.134030 + 0.232147i
\(502\) 0 0
\(503\) 34.0000 1.51599 0.757993 0.652263i \(-0.226180\pi\)
0.757993 + 0.652263i \(0.226180\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) −1.00000 1.73205i −0.0444116 0.0769231i
\(508\) 0 0
\(509\) 4.50000 7.79423i 0.199459 0.345473i −0.748894 0.662690i \(-0.769415\pi\)
0.948353 + 0.317217i \(0.102748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.00000 3.46410i 0.0883022 0.152944i
\(514\) 0 0
\(515\) −2.00000 3.46410i −0.0881305 0.152647i
\(516\) 0 0
\(517\) 36.0000 1.58328
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) −9.00000 + 15.5885i −0.393543 + 0.681636i −0.992914 0.118835i \(-0.962084\pi\)
0.599371 + 0.800471i \(0.295417\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.00000 + 15.5885i −0.392046 + 0.679044i
\(528\) 0 0
\(529\) −13.0000 22.5167i −0.565217 0.978985i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) −6.00000 10.3923i −0.259403 0.449299i
\(536\) 0 0
\(537\) −9.00000 + 15.5885i −0.388379 + 0.672692i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 19.0000 32.9090i 0.816874 1.41487i −0.0911008 0.995842i \(-0.529039\pi\)
0.907975 0.419025i \(-0.137628\pi\)
\(542\) 0 0
\(543\) −20.0000 34.6410i −0.858282 1.48659i
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 23.0000 0.983409 0.491704 0.870762i \(-0.336374\pi\)
0.491704 + 0.870762i \(0.336374\pi\)
\(548\) 0 0
\(549\) 7.00000 + 12.1244i 0.298753 + 0.517455i
\(550\) 0 0
\(551\) 2.50000 4.33013i 0.106504 0.184470i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.00000 + 3.46410i −0.0848953 + 0.147043i
\(556\) 0 0
\(557\) −2.00000 3.46410i −0.0847427 0.146779i 0.820539 0.571591i \(-0.193674\pi\)
−0.905282 + 0.424812i \(0.860340\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) −20.0000 34.6410i −0.842900 1.45994i −0.887433 0.460937i \(-0.847513\pi\)
0.0445334 0.999008i \(-0.485820\pi\)
\(564\) 0 0
\(565\) 0.500000 0.866025i 0.0210352 0.0364340i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.5000 32.0429i 0.775560 1.34331i −0.158919 0.987292i \(-0.550801\pi\)
0.934479 0.356018i \(-0.115866\pi\)
\(570\) 0 0
\(571\) 3.50000 + 6.06218i 0.146470 + 0.253694i 0.929921 0.367760i \(-0.119875\pi\)
−0.783450 + 0.621455i \(0.786542\pi\)
\(572\) 0 0
\(573\) −48.0000 −2.00523
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −9.00000 15.5885i −0.374675 0.648956i 0.615603 0.788056i \(-0.288912\pi\)
−0.990278 + 0.139100i \(0.955579\pi\)
\(578\) 0 0
\(579\) −2.00000 + 3.46410i −0.0831172 + 0.143963i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.00000 10.3923i 0.248495 0.430405i
\(584\) 0 0
\(585\) −0.500000 0.866025i −0.0206725 0.0358057i
\(586\) 0 0
\(587\) 15.0000 0.619116 0.309558 0.950881i \(-0.399819\pi\)
0.309558 + 0.950881i \(0.399819\pi\)
\(588\) 0 0
\(589\) 9.00000 0.370839
\(590\) 0 0
\(591\) −6.00000 10.3923i −0.246807 0.427482i
\(592\) 0 0
\(593\) 20.5000 35.5070i 0.841834 1.45810i −0.0465084 0.998918i \(-0.514809\pi\)
0.888342 0.459182i \(-0.151857\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.0000 + 24.2487i −0.572982 + 0.992434i
\(598\) 0 0
\(599\) −10.5000 18.1865i −0.429018 0.743082i 0.567768 0.823189i \(-0.307807\pi\)
−0.996786 + 0.0801071i \(0.974474\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) 0 0
\(605\) 2.50000 + 4.33013i 0.101639 + 0.176045i
\(606\) 0 0
\(607\) −20.0000 + 34.6410i −0.811775 + 1.40604i 0.0998457 + 0.995003i \(0.468165\pi\)
−0.911621 + 0.411033i \(0.865168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.50000 + 7.79423i −0.182051 + 0.315321i
\(612\) 0 0
\(613\) 8.00000 + 13.8564i 0.323117 + 0.559655i 0.981129 0.193352i \(-0.0619359\pi\)
−0.658012 + 0.753007i \(0.728603\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) 34.0000 1.36879 0.684394 0.729112i \(-0.260067\pi\)
0.684394 + 0.729112i \(0.260067\pi\)
\(618\) 0 0
\(619\) 10.0000 + 17.3205i 0.401934 + 0.696170i 0.993959 0.109749i \(-0.0350048\pi\)
−0.592025 + 0.805919i \(0.701671\pi\)
\(620\) 0 0
\(621\) −14.0000 + 24.2487i −0.561801 + 0.973067i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) 4.00000 + 6.92820i 0.159745 + 0.276686i
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 0 0
\(633\) 23.0000 + 39.8372i 0.914168 + 1.58339i
\(634\) 0 0
\(635\) −4.00000 + 6.92820i −0.158735 + 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 7.00000 12.1244i 0.276916 0.479632i
\(640\) 0 0
\(641\) −20.5000 35.5070i −0.809701 1.40244i −0.913071 0.407801i \(-0.866296\pi\)
0.103370 0.994643i \(-0.467038\pi\)
\(642\) 0 0
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 0 0
\(645\) −2.00000 −0.0787499
\(646\) 0 0
\(647\) 6.00000 + 10.3923i 0.235884 + 0.408564i 0.959529 0.281609i \(-0.0908680\pi\)
−0.723645 + 0.690172i \(0.757535\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) 6.00000 + 10.3923i 0.234439 + 0.406061i
\(656\) 0 0
\(657\) −3.00000 −0.117041
\(658\) 0 0
\(659\) −45.0000 −1.75295 −0.876476 0.481446i \(-0.840112\pi\)
−0.876476 + 0.481446i \(0.840112\pi\)
\(660\) 0 0
\(661\) 15.5000 + 26.8468i 0.602880 + 1.04422i 0.992383 + 0.123194i \(0.0393136\pi\)
−0.389503 + 0.921025i \(0.627353\pi\)
\(662\) 0 0
\(663\) 2.00000 3.46410i 0.0776736 0.134535i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −17.5000 + 30.3109i −0.677603 + 1.17364i
\(668\) 0 0
\(669\) 21.0000 + 36.3731i 0.811907 + 1.40626i
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) 21.0000 0.809491 0.404745 0.914429i \(-0.367360\pi\)
0.404745 + 0.914429i \(0.367360\pi\)
\(674\) 0 0
\(675\) −8.00000 13.8564i −0.307920 0.533333i
\(676\) 0 0
\(677\) 8.00000 13.8564i 0.307465 0.532545i −0.670342 0.742052i \(-0.733853\pi\)
0.977807 + 0.209507i \(0.0671860\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −8.00000 + 13.8564i −0.306561 + 0.530979i
\(682\) 0 0
\(683\) −2.00000 3.46410i −0.0765279 0.132550i 0.825222 0.564809i \(-0.191050\pi\)
−0.901750 + 0.432259i \(0.857717\pi\)
\(684\) 0 0
\(685\) 14.0000 0.534913
\(686\) 0 0
\(687\) 4.00000 0.152610
\(688\) 0 0
\(689\) 1.50000 + 2.59808i 0.0571454 + 0.0989788i
\(690\) 0 0
\(691\) −17.5000 + 30.3109i −0.665731 + 1.15308i 0.313355 + 0.949636i \(0.398547\pi\)
−0.979086 + 0.203445i \(0.934786\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.00000 + 13.8564i −0.303457 + 0.525603i
\(696\) 0 0
\(697\) 2.00000 + 3.46410i 0.0757554 + 0.131212i
\(698\) 0 0
\(699\) −50.0000 −1.89117
\(700\) 0 0
\(701\) 45.0000 1.69963 0.849813 0.527084i \(-0.176715\pi\)
0.849813 + 0.527084i \(0.176715\pi\)
\(702\) 0 0
\(703\) 1.00000 + 1.73205i 0.0377157 + 0.0653255i
\(704\) 0 0
\(705\) −9.00000 + 15.5885i −0.338960 + 0.587095i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.00000 10.3923i 0.225335 0.390291i −0.731085 0.682286i \(-0.760986\pi\)
0.956420 + 0.291995i \(0.0943191\pi\)
\(710\) 0 0
\(711\) −2.50000 4.33013i −0.0937573 0.162392i
\(712\) 0 0
\(713\) −63.0000 −2.35937
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 0 0
\(717\) −12.0000 20.7846i −0.448148 0.776215i
\(718\) 0 0
\(719\) −20.0000 + 34.6410i −0.745874 + 1.29189i 0.203911 + 0.978989i \(0.434635\pi\)
−0.949785 + 0.312903i \(0.898699\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −25.0000 + 43.3013i −0.929760 + 1.61039i
\(724\) 0 0
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) 0 0
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −1.00000 1.73205i −0.0369863 0.0640622i
\(732\) 0 0
\(733\) −10.5000 + 18.1865i −0.387826 + 0.671735i −0.992157 0.124999i \(-0.960107\pi\)
0.604331 + 0.796734i \(0.293441\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.0000 34.6410i 0.736709 1.27602i
\(738\) 0 0
\(739\) 4.00000 + 6.92820i 0.147142 + 0.254858i 0.930170 0.367129i \(-0.119659\pi\)
−0.783028 + 0.621987i \(0.786326\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) 6.00000 + 10.3923i 0.219823 + 0.380745i
\(746\) 0 0
\(747\) 2.50000 4.33013i 0.0914702 0.158431i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.5000 + 21.6506i −0.456131 + 0.790043i −0.998752 0.0499348i \(-0.984099\pi\)
0.542621 + 0.839978i \(0.317432\pi\)
\(752\) 0 0
\(753\) −16.0000 27.7128i −0.583072 1.00991i
\(754\) 0 0
\(755\) −14.0000 −0.509512
\(756\) 0 0
\(757\) −47.0000 −1.70824 −0.854122 0.520073i \(-0.825905\pi\)
−0.854122 + 0.520073i \(0.825905\pi\)
\(758\) 0 0
\(759\) −28.0000 48.4974i −1.01634 1.76034i
\(760\) 0 0
\(761\) −17.5000 + 30.3109i −0.634375 + 1.09877i 0.352273 + 0.935897i \(0.385409\pi\)
−0.986647 + 0.162872i \(0.947924\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.00000 1.73205i 0.0361551 0.0626224i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) 0 0
\(773\) 19.0000 + 32.9090i 0.683383 + 1.18365i 0.973942 + 0.226796i \(0.0728252\pi\)
−0.290560 + 0.956857i \(0.593841\pi\)
\(774\) 0 0
\(775\) 18.0000 31.1769i 0.646579 1.11991i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.00000 1.73205i 0.0358287 0.0620572i
\(780\) 0 0
\(781\) −28.0000 48.4974i −1.00192 1.73537i
\(782\) 0 0
\(783\) 20.0000 0.714742
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) −18.5000 32.0429i −0.659454 1.14221i −0.980757 0.195231i \(-0.937454\pi\)
0.321303 0.946976i \(-0.395879\pi\)
\(788\) 0 0
\(789\) −19.0000 + 32.9090i −0.676418 + 1.17159i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.00000 + 12.1244i −0.248577 + 0.430548i