# Properties

 Label 2548.1.q.b Level $2548$ Weight $1$ Character orbit 2548.q Analytic conductor $1.272$ Analytic rank $0$ Dimension $2$ Projective image $D_{3}$ CM discriminant -4 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2548,1,Mod(263,2548)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2548, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([3, 4, 2]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2548.263");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2548 = 2^{2} \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 2548.q (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.27161765219$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 52) Projective image: $$D_{3}$$ Projective field: Galois closure of 3.1.676.1 Artin image: $C_3\times S_3$ Artin field: Galois closure of 6.0.25969216.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + \zeta_{6}^{2} q^{2} - \zeta_{6} q^{4} + \zeta_{6} q^{5} + q^{8} + q^{9} +O(q^{10})$$ q + z^2 * q^2 - z * q^4 + z * q^5 + q^8 + q^9 $$q + \zeta_{6}^{2} q^{2} - \zeta_{6} q^{4} + \zeta_{6} q^{5} + q^{8} + q^{9} - q^{10} - \zeta_{6} q^{13} + \zeta_{6}^{2} q^{16} + \zeta_{6} q^{17} + \zeta_{6}^{2} q^{18} - \zeta_{6}^{2} q^{20} + q^{26} + \zeta_{6} q^{29} - \zeta_{6} q^{32} - q^{34} - \zeta_{6} q^{36} - \zeta_{6}^{2} q^{37} + \zeta_{6} q^{40} + \zeta_{6} q^{41} + \zeta_{6} q^{45} + \zeta_{6}^{2} q^{52} - \zeta_{6}^{2} q^{53} - q^{58} - q^{61} + q^{64} - \zeta_{6}^{2} q^{65} - \zeta_{6}^{2} q^{68} + q^{72} - \zeta_{6}^{2} q^{73} + \zeta_{6} q^{74} - q^{80} + q^{81} - q^{82} + \zeta_{6}^{2} q^{85} + \zeta_{6}^{2} q^{89} - q^{90} + \zeta_{6}^{2} q^{97} +O(q^{100})$$ q + z^2 * q^2 - z * q^4 + z * q^5 + q^8 + q^9 - q^10 - z * q^13 + z^2 * q^16 + z * q^17 + z^2 * q^18 - z^2 * q^20 + q^26 + z * q^29 - z * q^32 - q^34 - z * q^36 - z^2 * q^37 + z * q^40 + z * q^41 + z * q^45 + z^2 * q^52 - z^2 * q^53 - q^58 - q^61 + q^64 - z^2 * q^65 - z^2 * q^68 + q^72 - z^2 * q^73 + z * q^74 - q^80 + q^81 - q^82 + z^2 * q^85 + z^2 * q^89 - q^90 + z^2 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - q^{4} + q^{5} + 2 q^{8} + 2 q^{9}+O(q^{10})$$ 2 * q - q^2 - q^4 + q^5 + 2 * q^8 + 2 * q^9 $$2 q - q^{2} - q^{4} + q^{5} + 2 q^{8} + 2 q^{9} - 2 q^{10} - q^{13} - q^{16} + q^{17} - q^{18} + q^{20} + 2 q^{26} + q^{29} - q^{32} - 2 q^{34} - q^{36} + q^{37} + q^{40} + q^{41} + q^{45} - q^{52} + q^{53} - 2 q^{58} - 2 q^{61} + 2 q^{64} + q^{65} + q^{68} + 2 q^{72} + q^{73} + q^{74} - 2 q^{80} + 2 q^{81} - 2 q^{82} - q^{85} - 2 q^{89} - 2 q^{90} - 2 q^{97}+O(q^{100})$$ 2 * q - q^2 - q^4 + q^5 + 2 * q^8 + 2 * q^9 - 2 * q^10 - q^13 - q^16 + q^17 - q^18 + q^20 + 2 * q^26 + q^29 - q^32 - 2 * q^34 - q^36 + q^37 + q^40 + q^41 + q^45 - q^52 + q^53 - 2 * q^58 - 2 * q^61 + 2 * q^64 + q^65 + q^68 + 2 * q^72 + q^73 + q^74 - 2 * q^80 + 2 * q^81 - 2 * q^82 - q^85 - 2 * q^89 - 2 * q^90 - 2 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times$$.

 $$n$$ $$197$$ $$885$$ $$1275$$ $$\chi(n)$$ $$\zeta_{6}^{2}$$ $$-\zeta_{6}$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
263.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 + 0.866025i 0 0 1.00000 1.00000 −1.00000
1647.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 0.866025i 0 0 1.00000 1.00000 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by $$\Q(\sqrt{-1})$$
91.g even 3 1 inner
364.q odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.1.q.b 2
4.b odd 2 1 CM 2548.1.q.b 2
7.b odd 2 1 2548.1.q.a 2
7.c even 3 1 52.1.j.a 2
7.c even 3 1 2548.1.bi.b 2
7.d odd 6 1 2548.1.bi.a 2
7.d odd 6 1 2548.1.bn.a 2
13.c even 3 1 2548.1.bi.b 2
21.h odd 6 1 468.1.br.a 2
28.d even 2 1 2548.1.q.a 2
28.f even 6 1 2548.1.bi.a 2
28.f even 6 1 2548.1.bn.a 2
28.g odd 6 1 52.1.j.a 2
28.g odd 6 1 2548.1.bi.b 2
35.j even 6 1 1300.1.bc.a 2
35.l odd 12 2 1300.1.w.a 4
52.j odd 6 1 2548.1.bi.b 2
56.k odd 6 1 832.1.bb.a 2
56.p even 6 1 832.1.bb.a 2
84.n even 6 1 468.1.br.a 2
91.g even 3 1 676.1.c.b 1
91.g even 3 1 inner 2548.1.q.b 2
91.h even 3 1 52.1.j.a 2
91.k even 6 1 676.1.j.a 2
91.m odd 6 1 2548.1.q.a 2
91.n odd 6 1 2548.1.bi.a 2
91.r even 6 1 676.1.j.a 2
91.u even 6 1 676.1.c.a 1
91.v odd 6 1 2548.1.bn.a 2
91.x odd 12 2 676.1.i.a 4
91.z odd 12 2 676.1.i.a 4
91.bd odd 12 2 676.1.b.a 2
112.u odd 12 2 3328.1.v.b 4
112.w even 12 2 3328.1.v.b 4
140.p odd 6 1 1300.1.bc.a 2
140.w even 12 2 1300.1.w.a 4
273.s odd 6 1 468.1.br.a 2
364.q odd 6 1 676.1.c.b 1
364.q odd 6 1 inner 2548.1.q.b 2
364.s odd 6 1 676.1.c.a 1
364.v even 6 1 2548.1.bi.a 2
364.ba even 6 1 2548.1.bn.a 2
364.bi odd 6 1 52.1.j.a 2
364.bk odd 6 1 676.1.j.a 2
364.bl odd 6 1 676.1.j.a 2
364.br even 6 1 2548.1.q.a 2
364.bt even 12 2 676.1.b.a 2
364.ca even 12 2 676.1.i.a 4
364.ce even 12 2 676.1.i.a 4
455.ba even 6 1 1300.1.bc.a 2
455.cq odd 12 2 1300.1.w.a 4
728.bx odd 6 1 832.1.bb.a 2
728.cw even 6 1 832.1.bb.a 2
1092.ck even 6 1 468.1.br.a 2
1456.fy even 12 2 3328.1.v.b 4
1456.gh odd 12 2 3328.1.v.b 4
1820.ck odd 6 1 1300.1.bc.a 2
1820.gu even 12 2 1300.1.w.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.1.j.a 2 7.c even 3 1
52.1.j.a 2 28.g odd 6 1
52.1.j.a 2 91.h even 3 1
52.1.j.a 2 364.bi odd 6 1
468.1.br.a 2 21.h odd 6 1
468.1.br.a 2 84.n even 6 1
468.1.br.a 2 273.s odd 6 1
468.1.br.a 2 1092.ck even 6 1
676.1.b.a 2 91.bd odd 12 2
676.1.b.a 2 364.bt even 12 2
676.1.c.a 1 91.u even 6 1
676.1.c.a 1 364.s odd 6 1
676.1.c.b 1 91.g even 3 1
676.1.c.b 1 364.q odd 6 1
676.1.i.a 4 91.x odd 12 2
676.1.i.a 4 91.z odd 12 2
676.1.i.a 4 364.ca even 12 2
676.1.i.a 4 364.ce even 12 2
676.1.j.a 2 91.k even 6 1
676.1.j.a 2 91.r even 6 1
676.1.j.a 2 364.bk odd 6 1
676.1.j.a 2 364.bl odd 6 1
832.1.bb.a 2 56.k odd 6 1
832.1.bb.a 2 56.p even 6 1
832.1.bb.a 2 728.bx odd 6 1
832.1.bb.a 2 728.cw even 6 1
1300.1.w.a 4 35.l odd 12 2
1300.1.w.a 4 140.w even 12 2
1300.1.w.a 4 455.cq odd 12 2
1300.1.w.a 4 1820.gu even 12 2
1300.1.bc.a 2 35.j even 6 1
1300.1.bc.a 2 140.p odd 6 1
1300.1.bc.a 2 455.ba even 6 1
1300.1.bc.a 2 1820.ck odd 6 1
2548.1.q.a 2 7.b odd 2 1
2548.1.q.a 2 28.d even 2 1
2548.1.q.a 2 91.m odd 6 1
2548.1.q.a 2 364.br even 6 1
2548.1.q.b 2 1.a even 1 1 trivial
2548.1.q.b 2 4.b odd 2 1 CM
2548.1.q.b 2 91.g even 3 1 inner
2548.1.q.b 2 364.q odd 6 1 inner
2548.1.bi.a 2 7.d odd 6 1
2548.1.bi.a 2 28.f even 6 1
2548.1.bi.a 2 91.n odd 6 1
2548.1.bi.a 2 364.v even 6 1
2548.1.bi.b 2 7.c even 3 1
2548.1.bi.b 2 13.c even 3 1
2548.1.bi.b 2 28.g odd 6 1
2548.1.bi.b 2 52.j odd 6 1
2548.1.bn.a 2 7.d odd 6 1
2548.1.bn.a 2 28.f even 6 1
2548.1.bn.a 2 91.v odd 6 1
2548.1.bn.a 2 364.ba even 6 1
3328.1.v.b 4 112.u odd 12 2
3328.1.v.b 4 112.w even 12 2
3328.1.v.b 4 1456.fy even 12 2
3328.1.v.b 4 1456.gh odd 12 2

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{2} - T_{5} + 1$$ acting on $$S_{1}^{\mathrm{new}}(2548, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + T + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2} - T + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2} + T + 1$$
$17$ $$T^{2} - T + 1$$
$19$ $$T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2} - T + 1$$
$31$ $$T^{2}$$
$37$ $$T^{2} - T + 1$$
$41$ $$T^{2} - T + 1$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2} - T + 1$$
$59$ $$T^{2}$$
$61$ $$(T + 1)^{2}$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2} - T + 1$$
$79$ $$T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2} + 2T + 4$$
$97$ $$T^{2} + 2T + 4$$