Properties

Label 2541.2.y
Level 2541
Weight 2
Character orbit y
Rep. character \(\chi_{2541}(232,\cdot)\)
Character field \(\Q(\zeta_{11})\)
Dimension 1320
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.y (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 3560 1320 2240
Cusp forms 3480 1320 2160
Eisenstein series 80 0 80

Trace form

\( 1320q + 4q^{2} - 128q^{4} + 4q^{7} + 12q^{8} + 1320q^{9} + O(q^{10}) \) \( 1320q + 4q^{2} - 128q^{4} + 4q^{7} + 12q^{8} + 1320q^{9} + 16q^{10} + 8q^{11} + 16q^{12} - 72q^{13} + 4q^{14} + 8q^{15} - 104q^{16} + 8q^{17} + 4q^{18} + 8q^{19} + 40q^{20} + 4q^{21} - 8q^{22} - 28q^{23} - 116q^{25} + 40q^{26} + 12q^{28} + 16q^{29} + 32q^{30} - 12q^{31} + 108q^{32} + 8q^{33} + 56q^{34} - 128q^{36} + 32q^{37} + 96q^{38} + 32q^{39} + 144q^{40} + 8q^{41} + 72q^{43} + 66q^{44} + 104q^{46} + 64q^{47} + 64q^{48} - 132q^{49} - 372q^{50} + 24q^{51} - 24q^{52} + 48q^{53} - 96q^{55} - 118q^{56} + 32q^{57} + 2q^{58} + 56q^{59} + 32q^{60} + 40q^{61} - 108q^{62} + 4q^{63} - 92q^{64} - 92q^{65} + 40q^{66} - 52q^{67} + 88q^{68} + 8q^{69} - 36q^{70} - 120q^{71} + 12q^{72} + 4q^{73} + 72q^{74} + 48q^{75} - 76q^{76} + 16q^{77} - 180q^{78} - 80q^{79} + 136q^{80} + 1320q^{81} + 16q^{82} + 112q^{83} + 12q^{84} + 64q^{86} + 40q^{87} + 100q^{88} + 32q^{89} + 16q^{90} + 96q^{92} + 40q^{93} - 232q^{94} + 152q^{95} + 40q^{96} + 24q^{97} - 18q^{98} + 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database