Properties

Label 2541.2.w
Level 2541
Weight 2
Character orbit w
Rep. character \(\chi_{2541}(118,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 576
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.w (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 77 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 1504 576 928
Cusp forms 1312 576 736
Eisenstein series 192 0 192

Trace form

\( 576q + 148q^{4} - 10q^{7} + 20q^{8} + 144q^{9} + O(q^{10}) \) \( 576q + 148q^{4} - 10q^{7} + 20q^{8} + 144q^{9} - 20q^{14} + 12q^{15} - 160q^{16} - 10q^{18} + 24q^{23} + 116q^{25} + 30q^{28} + 40q^{29} + 40q^{35} - 148q^{36} - 24q^{37} - 2q^{42} + 70q^{46} + 58q^{49} + 40q^{51} + 56q^{53} - 112q^{56} - 6q^{58} + 48q^{60} - 10q^{63} + 132q^{64} + 40q^{67} + 10q^{70} - 100q^{71} + 10q^{72} - 80q^{74} + 120q^{78} - 40q^{79} - 144q^{81} - 60q^{84} + 40q^{85} + 78q^{86} - 10q^{91} - 18q^{92} + 92q^{93} - 20q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database