Properties

Label 2541.2.u
Level 2541
Weight 2
Character orbit u
Rep. character \(\chi_{2541}(251,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 1088
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.u (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 231 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 1504 1216 288
Cusp forms 1312 1088 224
Eisenstein series 192 128 64

Trace form

\( 1088q + 268q^{4} + 2q^{7} + 12q^{9} + O(q^{10}) \) \( 1088q + 268q^{4} + 2q^{7} + 12q^{9} - 180q^{16} - 2q^{18} - 184q^{25} - 8q^{28} - 24q^{30} + 54q^{36} - 12q^{37} + 66q^{39} + 50q^{42} - 36q^{46} - 30q^{49} - 38q^{51} + 86q^{57} + 136q^{58} - 8q^{60} - 44q^{63} + 204q^{64} - 224q^{67} - 142q^{70} - 86q^{72} + 20q^{78} + 156q^{79} - 76q^{81} + 30q^{84} - 8q^{85} - 86q^{91} - 48q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database