Properties

Label 2541.2.s
Level $2541$
Weight $2$
Character orbit 2541.s
Rep. character $\chi_{2541}(239,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $864$
Sturm bound $704$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2541.s (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 1504 864 640
Cusp forms 1312 864 448
Eisenstein series 192 0 192

Trace form

\( 864 q - 8 q^{3} - 216 q^{4} + 10 q^{6} + 22 q^{9} + 52 q^{12} - 6 q^{15} - 208 q^{16} + 10 q^{18} + 60 q^{19} - 30 q^{24} + 240 q^{25} - 8 q^{27} + 40 q^{28} - 60 q^{30} - 52 q^{31} - 8 q^{34} + 6 q^{36}+ \cdots + 100 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)