Properties

Label 2541.2.p
Level 2541
Weight 2
Character orbit p
Rep. character \(\chi_{2541}(241,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 288
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 77 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 752 288 464
Cusp forms 656 288 368
Eisenstein series 96 0 96

Trace form

\( 288q + 148q^{4} + 12q^{5} + 144q^{9} + O(q^{10}) \) \( 288q + 148q^{4} + 12q^{5} + 144q^{9} + 48q^{14} - 8q^{15} - 132q^{16} - 24q^{23} + 160q^{25} + 24q^{26} + 12q^{31} + 296q^{36} + 28q^{37} - 24q^{38} + 32q^{42} + 12q^{45} - 36q^{47} + 32q^{49} - 32q^{53} + 88q^{56} - 28q^{58} + 96q^{59} + 12q^{60} - 320q^{64} - 16q^{67} - 16q^{70} - 104q^{71} - 48q^{75} + 72q^{78} - 24q^{80} - 144q^{81} + 72q^{82} - 72q^{86} - 72q^{89} - 36q^{91} + 16q^{92} - 52q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database