Properties

Label 2541.2.n
Level 2541
Weight 2
Character orbit n
Rep. character \(\chi_{2541}(122,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 546
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 752 618 134
Cusp forms 656 546 110
Eisenstein series 96 72 24

Trace form

\( 546q + 3q^{3} + 258q^{4} + 5q^{7} + q^{9} + O(q^{10}) \) \( 546q + 3q^{3} + 258q^{4} + 5q^{7} + q^{9} - 6q^{12} + 4q^{15} - 216q^{16} + 18q^{18} + 3q^{19} + 8q^{21} - 36q^{24} - 203q^{25} + 32q^{28} + 20q^{30} + 39q^{31} - 4q^{36} + 3q^{37} - 23q^{39} - 60q^{40} + 56q^{42} - 26q^{43} + 24q^{45} - 4q^{46} - q^{49} + 16q^{51} - 6q^{52} - 66q^{54} + 26q^{57} + 24q^{58} - 60q^{60} + 24q^{61} + 9q^{63} - 312q^{64} - 11q^{67} + 84q^{70} - 36q^{72} + 33q^{73} - 57q^{75} - 188q^{78} - 27q^{79} - 51q^{81} + 60q^{82} - 2q^{84} - 8q^{85} - 18q^{87} + 9q^{91} + 17q^{93} - 48q^{94} + 18q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database